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Causal Inference Using Potential Outcomes:
Design, Modeling, Decisions

Donald B. RUBIN

Causal effects are defined as comparisons of potential outcomes under different treatments on a common set of units. Observed values of the
potential outcomes are revealed by the assignment mechanism—a probabilistic model for the treatment each unit receives as a function of
covariates and potential outcomes. Fisher made tremendous contributions to causal inference through his work on the design of randomized
experiments, but the potential outcomes perspective applies to other complex experiments and nonrandomized studies as well. As noted
by Kempthorne in his 1976 discussion of Savage’s Fisher lecture, Fisher never bridged his work on experimental design and his work
on parametric modeling, a bridge that appears nearly automatic with an appropriate view of the potential outcomes framework, where
the potential outcomes and covariates arc given a Bayesian distribution to complete the model specification. Also, this framework crisply
separates scientific inference for causal effects and decisions based on such inference, a distinction evident in Fisher’s discussion of tests
of significance versus (ests in an accept/reject framework. But Fisher never uscd the potential outcomes framework, originally proposed by
Neyman in the context of randomized experiments, and as a result he provided generally flawed advice concerning the use of the analysis

of covariance to adjust for posttreatment concomitants in randomized trials.
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causal model.

1. PROLOGUE

[ greatly appreciate the invitation of the COPSS selection
committee to contribute this year’s R. A. Fisher Memorial Lec-
ture. It certainly is humbling to consider the massive contribu-
tions of this giant of twentieth century statistics, as well as the
published versions of the previous Fisher lectures. I will not
attempt to compete with the incredibly encompassing lecture
by Jimmie Savage (1976), with an assist from John Pratt, who
helped complete it posthumously, but rather focus on one part
of Fisher’s work that has influenced me greatly, the design of
experiments for causal inference, and attempt to relate some
aspects of his contributions to current developments concern-
ing inference for causal effects in more general settings. This
presentation, however, will be more idiosyncratic than Cox’s
(1989) Fisher lecture on a somewhat similar topic, in that T will
make no systematic attempt to refer to the many outstanding
contributions made by others to this arca, but rather will con-
centrate on how Fisher’s work connects to the perspective that
I advocate.

I never met Fisher in person; he died in 1962, a time when
I was still doing physics as an undergraduate at Princeton Uni-
versity. Most of my knowledge of him, besides that obtained
through reading his contributions, was gained from my Ph.D.
advisor at Harvard University, Bill Cochran. Bill was a wonder-
ful man with a charming and warm sense of humor.

Bill noted that Fisher, as everyone familiar with him knew,
was a man of seemingly unbounded brilliance and arrogance.
Bill had a variety of stories that he used to illustrate both of
these characteristics, often with great humor with Bill as the
butt of the story. One story, which illustrates the arrogance more
than the brilliance, is relevant to the topic of this presentation,
a connection made in the final section. It concerned the Fieller—
Creasy controversy as recorded in the Royal Statistical Soci-
ety (RSS) Symposium on Interval Estimation in 1954. Fieller
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(1954) and Creasy (1954) proposed two distinct “fiducial”
solutions to the problem, in essence, of obtaining an interval
estimate for the ratio of two means of independent normal dis-
tributions with known variances. Mr. Fieller, an established re-
scarcher, had proposed a solution years earlier that had Fisher’s
endorsement as the fiducial solution. Moreover, Fieller (1944)
showed that it satisfied Neyman’s (1934) criterion for a confi-
dence interval.

Miss Creasy, in contrast, was a young researcher who had
proposed a fiducial interval based on the same framework that
Fisher had used to obtain the fiducial distribution for the dif-
ference between the means of two independent normal distri-
butions with unknown variances, the Behrens—Fisher problem.
Fisher was fairly brutal to the young Miss Creasy in his pub-
lished discussion and, apparently, according to Bill, was even
more disparaging of her efforts at the meeting.

At the time of the meeting, however, Cochran could not un-
derstand why the Creasy derivation was faulty, based as it was
on Fisher’s endorsed fiducial solution to the Behrens—Fisher
problem. Cochran found Fisher in his office a few days after
the RSS meeting, and Fisher immediately went to the black-
board, muttering words to the effect that only an idiot could not
understand something so simple. Fisher began to write the as-
sumptions with accompanying condescending comments, and
Cochran could see after a few lines that Fisher was heading
toward the Creasy solution! Fisher abruptly stopped writing,
paused, and then quickly rubbed out all of his “derivation” and
concluded his “proof” with something like, “From here it’s ob-
vious, even to you!” He proceeded to dismiss Cochran, having
wasted enough time on this junior Scottish fool.

Cochran, who had daughters, told me that he felt that Fisher
was undoubtedly especially dismissive of Creasy because she
was Miss Creasy, and such people had little place in such sci-
entific debates. Bill clearly thought otherwise.

Savage’s (1976, p. 446) conclusion on the merits of Fisher’s
argumentation on this topic is consistent with Cochran’s:

© 2005 American Statistical Association
Journal of the American Statistical Association
March 2005, Vol. 100, No. 469, Review Article
DOI 10.1198/016214504000001880

322

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.




Rubin: Causal Inference Using Potential Outcomes

On one occasion, Fisher (1954) struck out blindly against a young lady who
had been anything but offensive or incompetent. His conclusion was that had
the lady known what she was about she would have solved a certain problem in
a certain fashion; he was right about that but failed to notice that she had solved
it in just that fashion.

We return to this story after our brief journey through causal
inference.

2. THE CAUSAL ESTIMAND = “THE SCIENCE”

When facing any problem of statistical inference, it is most
important to begin by understanding the quantities that we are
trying to estimate—the estimands. Doing so is particularly crit-
ical when dealing with causal inference, where mistakes can
easily be made by describing the technique (e.g., computer pro-
gram) used to do the estimation without any description of the
object of the estimation.

In standard problems of causal inference, the causal esti-
mand is the array of values depicted in Figure 1. Here there are
N units, which are physical objects at particular points in time
(e.g., plots of land, individual people, one person at repeated
points in time). Each unit can be exposed or not to a treatment,
here called “active treatment” if exposed and “control treat-
ment” if not exposed; for example, the taking of aspirin or not.
We generally denote these by “treatment” and “control” with-
out ambiguity. The column labeled “Covariates,” X, represents
variables that take their values before the treatment assignment
or, more generally, simply cannot be affected by the treatment,
such as preaspirin headache pain or sex of the unit.

The columns labeled “Potential Outcomes” present the val-
ues of the outcome variable Y for each unit at a particular point
in time after the action (e.g., headache pain 2 hours after taking
aspirin or not), ¥ (1) under the active treatment, and Y (0) under
the control treatment. Any information that is to be analyzed is
included in X, Y (1), and Y (0), and thus the indexing of the units
is completely random, that is, simply a random permutation of
I,...,N.

The column labeled “Unit-Level Causal Effects” provides
the collection of individual unit-level causal effects, which for
the ith unit are, the comparison of ¥;(1) and ¥;(0), typically the
difference, Y;(1) — Y;(0), but not always; the ratio or any such
comparison could be used to define unit-level causal effects.
Of course, we can never observe both Y;(1) and Y;(0) for any
unit £, because we cannot unwind time and go back and expose
the ith unit to the other treatment. This is called the “fundamen-
tal problem of causal inference” (Holland 1986). Each potential
outcome is observable, but we can never observe all of them.

As indicated by the last column, “summary” causal effects
can also be defined at the level of collections of units, such

Potential outcomes

Covariates Treatment Control Unit-level Summary
Units X Y(1) Y(0) Causal effects Causal effects
1 X4 Yi(1) Y1(0)  Yy(1) v. Y4(0) Comparison of
: : . . : Yi(1) v. Yi(0)
. : . : . for a common
i Xi Yi(1) Yi(0)  Yi()v. Yi(0) et of units
N Xn Ya(1)  Yn(0)  Yn(1)v. Yn(0)

Figure 1. “Science”—The Causal Estimand.
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as the mean unit-level causal effect for all units, the median
unit-level causal effects for all males, the difference for females
between the median Y;(1) and the median Y;(0), and so on.
Many summary causal effects are typical unit-level causal ef-
fects, such as the mean or median unit-level causal effect for
a collection of units. Other summary causal effects are marginal
in that they compare some aspect of the marginal distributions
of Y(1) and Y(0) for a collection of units, such as for females,
median Y;(1) — median Y;(0). Mean causal effects have a sim-
ple interpretation because they are both typical unit-level and
marginal causal effects.

The critical requirement, however, is that to be a causal ef-
fect, the comparison must be a comparison of Y;(1) and Y;(()
for a common set of units, such as females. More formally,
a causal effect must be a comparison of the ordered sets
{Y;(1),i € S} and {Y;(0),i e S}, not {Y;(1),i€ S} and {Y;(0),
i€ 8o}, S1 # Sp. One cannot compare medical costs for male
smokers with medical costs for female nonsmokers and claim
that this comparison is a causal effect of smoking without mak-
ing heroic and unwarranted assumptions. This requirement is
more subtle than it might first appear. In fact, as I discuss later,
Fisher himself did make such an error throughout his life. I see
this error as possibly attributable to Fisher’s unwillingness to
utilize the marvelous contribution of formal notation for po-
tential outcomes, originally due to Jerzy Neyman. As Savage
(1976, p. 446) stated:

[ am surely not alone in having suspected that some of Fisher’'s major views
were adopted simply to avoid agreeing with his opponents (Neyman 1961,
pp. 148-149).

In any case, the depiction in Figure 1 requires assumptions
for it to be adequate—in particular, SUTVA (stable unit treat-
ment value assumption) (Rubin 1980), which comprises two
subassumptions. First, it assumes that there is no interference
between units (Cox 1958); that is, neither Y;(1) nor Y;(0) is
affected by what action any other unit received. Second, it as-
sumes that there are no hidden versions of treatments; no matter
how unit i received treatment 1, the outcome that would be ob-
served would be Y;(1) and similarly for treatment 0.

An assumption that is also implicit in the representation in
Figure | is that the science—the covariates and the poten-
tial outcomes—is not affected by how or whether we try to
learn about it, whether by completely randomized experiments,
randomized blocks designs, observational studies, or another
method. That is, whether T took an aspirin because | tossed
a fair coin to decide or because 1 happened to have an aspirin
nearby does not affect the pain that would be observed under
either treatment. Or, more topically, whether I try to learn about
the effects of hormone replacement therapy on postmenopausal
women through a randomized experiment (e.g., the Woman’s
Health Initiative Study Group 1998) or through an observa-
tional study (e.g., the Nurses Heath Study, Grodstein, Clarkson,
and Manson 2003), the science does not change—the causal
effects of taking versus not taking hormones for the units are
not affected. Without these assumptions, causal inference us-
ing potential outcomes is far more complicated, although still
possible in principle by, for example, allowing only some units
to interfere with each other, as with models of additive carry-
over effects of drugs, or by allowing the act of observation to
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be an additional intervention, in accordance with quantum me-
chanics. As aresult, SUTVA is commonly made, although often
implicitly and sometimes without much thought.

Nothing is wrong with making assumptions; causal inference
is impossible without making assumptions, and they are the
strands that link statistics to science. It is the scientific qual-
ity of those assumptions, not their existence, that is critical.
There is always a trade-off between assumptions and data—
both bring information. With better data, fewer assumptions are
needed. But in the causal inference setting, assumptions are al-
ways necded, and it is imperative that they be explicated and
justified. One reason for providing this detail is so that readers
can understand the basis of conclusions. A related reason is that
such understanding should lead to scrutiny of the assumptions,
investigation of them, and, ideally, improvements. Sadly, this
stating of assumptions is typically absent in many analyses pur-
porting to be causal and replaced by a statement of what com-
puter programs were run, which I regard as entirely inadequate
scientifically.

Because at least half of the potential outcomes are missing
and the underlying assumptions about them are so critical, this
notation explicitly representing both potential outcomes is an
exceptional contribution to causal inference. However, despite
its apparent simplicity, it did not arise until 1923, and then only
in the context of completely randomized experiments.

3. FISHER AND NEYMAN ON THE POTENTIAL
OUTCOME NOTATION IN RANDOMIZED
EXPERIMENTS AND BEYOND

Neyman (1923), in his Ph.D. thesis, appears to have been the
first writer to use this potential outcome notation, and he did
so only in the context of a completely randomized experiment,
in particular, a hypothetical agricultural experiment, where the
units were distinct plots of land, and the potential outcomes
were called potential yields (of crops). In addition to introduc-
ing the potential outcome notation, Neyman also proved two
important facts about the completely randomized experiment.
First, the difference of observed sample means between the
ny treated units and the ng control units, y| — yg, was an unbi-
ased estimator of the average causal effect over all of the units,

Y Ty i Yi(l) = Yi0)
i=1 N

Here unbiased means averaging over all possible randomiza-
tions, with the potential outcomes treated as fixed values.
Neyman also showed that the usual estimate of the variance
of the ditference between two sample means, .S‘:I)'/I’L] + S% /no,
where s° refers to within-group sample variances, is generally
a positively biased estimate of the true variance of y; — yg over
all possible randomizations unless Y;(1) — Y;(0) is constant for
all £, in which case it is unbiased.

Notice that Neyman was writing about randomized exper-
iments a couple of years before Fisher (1925) explicitly pro-
posed them:

Ex. 44. Accuracy attained by random arrangement. The direct way of overcom-
ing this difficulty is to arrange the plots wholly at random.

Journal of the American Statistical Association, March 2005

Yet Fisher is generally credited with the “invention” or “discov-
ery” of randomized experiments. This attribution of random-
ization to Fisher rather than to Neyman reflects the dominant
position of the “English school” in the statistics of that time, and
more important historically, I believe, because Neyman himself
endorsed this attribution (Reid 1982, p. 45):

On one occasion, when someone perceived him as anticipating the English
statistician R. A. Fisher in the use of randomization, he objected strenuously:
“ .. Tueated theoretically an unrestrictedly randomized agricultural experiment
and the randomization was considered a prerequisite to probabilistic treatment
of the results. This is not the same as the recognition that without randomiza-
tion, an experiment has little value irrespective of the subsequent treatment.
The latter point is due to Fisher, and [ consider it as one of the most valuable of
Fisher’s achievements.”
Neyman evidently recognized the enormous difference between
doing mathematical calculations in statistics and understanding
their implications for the actual conduct of statistical practice.
The year after the publication of the first edition of Statistical
Methods for Research Workers, Fisher (1926) presented an ex-
tended discussion of randomization and introduced the “Fisher
sharp null hypothesis,” ¥;(1) = ¥;(0) for all i. This null hypoth-
esis is sharp in the sense that under it, all potential outcomes
are known for the units exposed to either treatment. Therefore
under this hypothesis, from the one actual randomization, we
know the hypothetical observed value of any statistic (i.e., any
function of the observed data, such as y; — yo) under all possible
randomizations of the units in this study. Thus we can calculate
a significance level (or p value) stating how unusual the actual
observed statistic is relative to all possible values of that statis-
tic that might have been observed with these units. I view this
as Fisher’s formulation of “proof by stochastic contradiction.”
But at the time Fisher “discovered” or “invented” physical
randomization, he did not use notation like Neyman’s and could
not have been aware of his thesis, which was written in Polish.
On the other hand, Fisher certainly seemed to have the idea of
potential outcomes lurking in his consciousness before 1923; as
he wrote (Fisher 1918, p. 214):

If we say, “This boy has grown tall because he has been well fed,” we are
not merely tracing out the cause and effect in an individual instance; we are
suggesting that he might quite probably have been worse fed, and that in this
case he would have been shorter.

Clearly, Fisher is contemplating an alternative hypothesis and
the associated potential outcome under that hypothesis. But
having the idea is very different from both having it and for-
mulating explicit mathematical notation for it. As far as I can
tell, Fisher never used the potential outcome notation despite
its common use in the context of randomized experiments after
about 1937 (e.g., Welch 1937, Pitman 1938; McCarthy 1939;
Anscombe 1948; Kempthorne 1952; Cox [958; Brillinger,
Jones, and Tukey 1978).

Although there are allusions to the intuitive idea of using po-
tential outcomes to define causal effects generally in the preced-
ing Fisher (1918) quotation and in many other places, such as
the economics literature (e.g., Haavelmo 1943; Tinbergen 1930;
Hurwicz 1962), I can find no explicit use of that notation to de-
scribe causal effects in nonrandomized studies until a half cen-
tury later (in Rubin 1974). The extension of Neyman'’s potential
outcome notation to define causal effects in both nonrandom-
ized and randomized studies is sometimes called the “Neyman—
Rubin” model (e.g., Pearl 1996). In the economics literature,
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the use of the potential outcomes notation to define causal ef-
fects has recently (e.g., Heckman 1996) been attributed to Roy
(1951) or Quandt (1958), which is puzzling because neither of
these articles addresses causal inference, and the former has no
mathematical notation at all. For seeds of potential outcomes
in economics, the earlier references cited at the start of this
paragraph are much more relevant; see the rejoinder by Angrist,
Imbens, and Rubin (1996) for more on this topic.

Some authors (e.g., Greenland, Pearl, and Robins 1999;
Dawid 2000) call the potential outcomes “counterfactuals,” bor-
rowing the term from philosophy (e.g., Lewis 1973). I much
prefer Neyman’s implied term “potential outcomes,” because
these values are not counterfactual until after treatments are
assigned, and calling all potential outcomes “counterfactuals”
certainly confuses quantities that can never be observed (e.g.,
your height at age 3 if you were born yesterday in the Arctic)
and so are truly a priori counterfactual, with unobserved poten-
tial outcomes that are not a priori counterfactual (see Frangakis
and Rubin 2002; Rubin 2004; and the discussion and reply for
more on this point).

In any case, whatever name we wish to use for potential out-
comes or for their use to define causal effects, they have rapidly
become standard in many branches of social, economic, and
biomedical sciences over the last two decades (e.g., Frangakis
and Baker 2001; Gelman and King 1990; Heckman 1989;
Imbens and Angrist 1994; Pratt and Schlaifer 1988; Sobel 1996;
Winship and Morgan 1999). This recent use of potential out-
comes in the literature of nonrandomized studies is in stark con-
trast to the previous literature, which used a deficient “observed
value” notation defined in Section 4 (e.g., Heckman 1979; Pratt
and Schlaifer 1984, to use two examples with identical authors
writing before and after the transition).

4. THE ASSIGNMENT MECHANISM

To see why randomized experiments are so special, we need
to embed them in a larger class of designs without their special
properties. This larger class that encompasses randomized ex-
periments is now generally called “assignment mechanisms”—
methods that assign treatments to units. An assignment mech-
anism can be thought of as a special type of missing-data
mechanism that creates missing potential outcomes (Rubin
1976, 1978).

Let W; indicate the assignment for unit i, where 1 implies the
active treatment and O implies the control, and * implies neither,
as with a future unit, W = (W, ..., Wi, ..., Wa)T. Then the
assignment mechanism gives the probability of the vector W
given fixed values of the science, X, Y(1), and Y(0), where this
notation refers to the full array of values for all units. Thus the
assignment mechanism can be written as

Pr(W|X, Y(1), Y(0)). (1

In (1), the vector W is the only random variable; the science
is regarded as fixed and waiting to be partially revealed by the
assignment mechanism. Thus Neyman’s results in Section 3 can
be stated as

E(91 — yolX, Y (1), Y(0)) = Y(1) — Y(0)
and

V(51— 5olX, Y(1), Y(0)) = E(s}/n1 + s3/nol X, Y(1), Y(0)),
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where E(-|-) and V(-|-) refer to expectation and variance over
the distribution of W given X, Y(1), Y(0), that is, over the ran-
domization distribution. Also, Fisher’s p value for y; — yo can
be stated, in an imprecise but hopefully clear notation, as

p value

=Pr(y1 — 50 = Y1,0bs — Y0.00s/X, Y(1) = Y(0), Y (0) = Y(D)),

where, again, y| — yg is a random variable because W is a ran-
dom variable, and y| obs — Y0,0bs 18 the actual observed value of
Y1 — Yo, this can formally be viewed as a posterior predictive
p value (Rubin 1984b; Meng 1994; Gelman, Meng, and Stern
1996) and so has a Bayesian justification, which I find intellec-
tually pleasing.

An assignment mechanism must be posited for probabilistic
causal inference, and in certain circumstances, such as random-
ized experiments, it is the only mode] that needs to be posited
to make inferential progress. That is, no model on the science
may be needed beyond SUTVA, which is what both Fisher and
Neyman showed in their seminal 1926 and 1923 publications.

All randomized experiments are assignment mechanisms
with two critically important properties. First, they are “ignor-
able” (Rubin 1976, 1978),

Pr(W(X, Y(0), Y(1)) = Pr(WIX, Yobs), (2)

where Y5 1S the collection of observed potential outcomes,
Yobs = (Yobs,15--+» Yobs,is -+ +» Yobs,N)5 Yobs,i 18 the observed
value of Y for unit i,

Yobs,i = WiY;i(1) + (1 — W) Yi(0). 3)
Analogously, we have that Y5 is the collection of missing or
unobserved potential outcomes, Yiis = (Ymis. 1, - - s Ymis.N)>

Yiisi = (1 = W Y:(1) + W;Yi(0). 4

Also, using a somewhat imprecise but unambiguous notation,
Y = (Yobs, Yimis)-

Second, in a randomized experiment, the unit-level probabil-
ities of treatment assignment, the “propensities” (Rosenbaum
and Rubin 1983), are between 0 and 1,

0 < Pr(W; = L|X, Yoby) < L. (5)

Explicit mathematical notation for a general assignment
mechanism did not appear in the literature until the 1970s, and
it now appears to be widely used and accepted. The literature
on randomized experiments gave expressions for ignorable as-
signment mechanisms. Sequential experiments (e.g., Chernoff
1972; play-the-winner rules, Ware 1989) were described with
explicit dependence of assignment on Yps, whereas classi-
cal randomized experiments (e.g., Cochran and Cox 1950;
Kempthorne 1952) were described with no dependence of as-
signment on Yops but only on blocking factors, incorporated
into X, and can be called “unconfounded,”

Pr(W|X, ¥(0), Y(1)) =Pr(W|X).

But the possible dependence on Yy,is does not seem to have been
formalized until Rubin (1975, 1976, 1978), as noted by Pratt
and Schlaifer (1988, pp. 23-24) (where, throughout, bracketed
expressions in direct quotations are added by me an attempt to
increase clarity):
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A fcausal| law can be observed in data if and only if the process that gencrated
the [observed] data [the assignment mechanism] satisfied a condition first stated
preciscly by Rubin (1978) but implicit in R. A. Fisher’s examples of the proper
analysis of experiments. . .. We are in the position unusual for critics of insisting
that Rubin’s contribution is much more important than he or his followers have
even suggested it is.

The literature on observational studies (briefly alluded to at
the end of Sec. 3) used models relating Yyps to both (W, X)
and hypothetical parameters 6 (e.g., via least squares regression
cquations), completely eschewing the use of potential outcomes
in favor of the collapsed Yps. But Yops mixes up science—
the potential outcomes, and what we do to try to learn about
science—and the assignment mechanism, as is clear from (2)
for Youns. Conscquently, this notation is inherently deficient
and can lead the brilliant astray, even Fisher, as we discuss
later. Using only the collapsed notation, Ygps, and the treat-
ment indicator W in place of the potential outcomes, one can-
not even directly state the critical benefit of randomization in
achieving ignorability. Even those who wrote with great clar-
ity in the context of randomized experiments used this deficient
notation in the context of observational studies and made mis-
takes. For example, in my discussion of Cochran’s contribu-
tions to observational studies (Rubin 1984a), 1 pointed out that
Bill’s posthumous book, Planning and Analysis of Observa-
tional Studies (Cochran 1983), faltered when discussing match-
ing with nonparallel response surfaces, that is, situations where
the regression of Y(1) on X was linear with a different slope
than the regression of Y(0) on X. I pointed out other similar
errors later (Rubin 1990).

Relying only on a model for the assignment mechanism,
we can make tremendous progress on statistical inference for
causal effects, even in observational studies, using, for exam-
ple, propensity scores (sce, e.g., Rosenbaum and Rubin 1983,
1984, 1985), and the explosion of recent literature on propen-
sity scores in applied journals (Google 2004 returned more than
13,000 hits for “propensity score”; see also Rosenbaum 2002).
But models on the science still have a critical role to play in
causal inference, as I now discuss using Bayesian statistics,
something Fisher eschewed just as he eschewed Neyman’s po-
tential outcomes.

5. MODELS ON THE SCIENCE—
BAYESIAN INFERENCE

Thus far, we have not presented any models on the science—
no concepts such as regression modeling, relative risks, odds
ratios, or hazards models. 1 feel that such models arise most
naturally in causal inference within a Bayesian framework. The
assignment-based perspectives of Fisher and Neyman do not
rely on models of science for their validity and in this sense
are inherently more robust, because models on the assignment
mechanism can be essentially correct, as in a randomized exper-
iment. However, do not forget the assumption of SUTVA, which
is on the science and an ingredient of Neyman’s assignment-
based approach (although automatically satisfied under Fisher’s
null hypothesis). Essentially all models on the science are
wrong, because we are trying to understand what nature is do-
ing. Nevertheless, even though all such models may be wrong,
some are very useful—a comment attributable to George Box.
The benefits of modeling the science in causal inference include
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the ability to deal with more complex situations and to summa-
rize results more logically.

Within the model-based Bayesian framework for causal in-
ference (Rubin 1975, 1978), we directly confront the fact that
at least half of the potential outcomes are missing by creat-
ing a posterior predictive distribution for them. More precisely,
from a model on the science,

Pr(X, ¥(1), Y(0)), ©)

and the model for the assignment mechanism, (1), we can find
the posterior predictive distribution of Y)s—the missing po-
tential outcomes, given the observed values of W, X, and Yops.
This posterior predictive distribution can be written as

Pr(Ymis|X, Yobs, W)
o Pr(X, Y(1), Y(0)) Pr(W|X, Y(1), Y(0)), (7)

where Y5 s the only unobserved random variable; X, Yous,
and W are all are assumed to be observed. From (7), we can
calculate the posterior distribution of any causal estimand, be-
cause all causal estimands are functions of the observed X, Yous,
and the missing Ymis. Essentially, by multiply imputing Yy,js ac-
cording to (7), we can simulate the posterior distribution of any
causal estimand that we want: Draw a value of Yy, impute it,
calculate the causal estimand, redraw Yis, and so on.

Two critical facts simplify this approach and create a bridge
to standard likelihood theory. The first fact is that the modeling
of the science is not as daunting as it first may appear. Recall
that the indexing of the units is, by definition, a random permu-
tation of 1, ..., N, and thus any distribution on the science must
be row-exchangeable, that is, constant under permutation of the
row indices. Thus, by de Finetti’s theorem, with essentially no
loss of generality we can write

N
Pr(X, Y(()),Y(l)):fl_[f(x,-, Y:(0), Yi(1)[8)p(0) d6, (8)

i=1

where f(:|0) is an iid model for cach unit’s science given
a hypothetical parameter @ with prior (or marginal) distribu-
tion p(0). Because of the central role of (8) in Bayesian in-
ference for causal effects and Savage’s enormous influence
on Bayesian statistics, it is interesting to note that neither
de Finetti’s comments following Savage’s Fisher lecture (1976)
nor the lecture itself reflects awareness of this role of de
Finetti’s theorem or the role of randomization in Bayesian
causal inference, discussed next.

The second critical fact is that if the treatment assignment
mechanism is ignorable (e.g., randomized), then when the ex-
pression for the assignment mechanism (2) is evaluated at the
observed data, it is free of dependence on Yy,is. Thus the right-
most factor in (7) is a constant, and so the explicit conditioning
on W in (7) can be ignored (hence the term “ignorable assign-
ment mechanism”):

Pr(Ymis|X, Yobs, W) o Pr(Yimis| X, Yobs). )

Introducing the parameter 6 from (8), we then have

Pr(¥Ymis| X, Yobs) = / Pr(YmisiX, Yobs, 0) Pr(01X, Yons) d6,
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where Pr(61X, Yops) is, by definition, the posterior distribution
of 6, equal to the prior distribution p(@) times the likelihood
of 9,

N
L(01X, Yobs) o< | [£(¥i.obs, Xil6)

i=1

= [ [roin. xi0) T £v:0), Xi10),

Wi=1 Wi=0

using an imprecise but hopefully clear notation.

Fisher made tremendous contributions to likelithood theory
itself (starting, essentially, with Fisher 1922) and to specific
models for f(:]0). But Fisher never related his vast work on
likelihoods and models to his vast work on experimental de-
sign. As Kempthorne (1976) noted when discussing Savage’s
(1976) Fisher lecture:

The work of Fisher abounds in curiosities. One which has struck me forcibly
is the absence of any discussion of the relationship of Fisher’s ideas on ex-
perimentation (DOE) to his general ideas on infercnce (SI). The latter book
contains no discussion of ideas of randomization... which made DOE so in-
teresting and compelling to investigators in noisy experimental sciences. Can
the ideas on randomization and on parametric likelihood theory be fused into
a coherent whole? I think not.

Yet the bridge between these two classes of Fisher’s contri-
butions is almost immediate if we are willing to use Neyman’s
potential outcomes and the Bayesian formulation sketched here,
because the resulting combination is an embedding of both
the assignment-based perspective and the modeling perspec-
tive in one coherent framework. This framework, which (1) ex-
tends Neyman’s potential outcomes to define causal effects in
all situations, (2) includes the formulation of an assignment
mechanism with explicit possible dependence on all potential
outcomes including the missing ones, and (3) embeds both
assignment-based and Bayesian-likelihood inference in a com-
mon framework, is the framework that 1 advocate, and it is now
sometimes called “Rubin’s causal model” (Holland 1986; also
see Angrist et al. 1996 for discussion). For a review of this ba-
sic perspective, see the article by Little and Rubin (2000), and
for an expanded treatment, including aspects such as traditional
econometric instrumental variables analyses, see the forthcom-
ing text by Imbens and Rubin (2005).

6. DECISIONS: BASED ON CURRENT KNOWLEDGE
OF SCIENCE AND ON COSTS OF DECISIONS

One consequence of the Bayesian approach to causal infer-
ence is that the posterior distribution of causal estimands, ob-
tained from the posterior predictive distribution of the missing
potential outcomes (7), is viewed as a summary of all that is
currently known about the science from the current data and
the prior science. Assuming that this summary of the current
state of knowledge is accurate, this can be combined with vari-
ous assessments of the costs and benefits of various decisions to
choose which decisions to make. This perspective is something
of an idealization; for example, decisions concerning which ex-
periments to conduct, which treatments to include, what sample
sizes to use, and so on, can greatly influence the scientific sum-
mary. But the perspective that (1) the science exists indepen-
dently of how we try to learn about it and that (2) if the model
used for analysis of the resulting data is approximately correct,
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then the resulting posterior distribution will give a fair sum-
mary of the current state of knowledge of that science seems,
at least to me, consistent with common views of the scientific
enterprise. For a statement of this attitude in the context of non-
compliance in pharmaceutical randomized experiments, see the
article by Sheiner and Rubin (1994) and the carlicr related arti-
cle with discussion by Efron and Feldman (1991).

Fisher might have agreed with this general claim if he had
been more sympathetic to the Bayesian perspective (Fisher
1956, pp. 102-103):

It is important that the scientific worker introduces no cost {unctions tor faulty
decisions. ... To do so would imply that the purposes to which new knowledge
was (0 be put were known and capable of evaluation. If, however, scientific
findings are communicated for the enlightenment of other free minds, they may
be put sooner or later to the service of a number of purposes, of which we can
know nothing.

Such statements by Fisher were often in the context of de-
bates over the use of “significance tests,” which summarized
evidence against a null hypothesis by a p value, versus the use
of “accept/reject” tests, which Fisher viewed as appropriate for
accepting or rejecting products, but not for scientific summa-
rization. But a claim that the scientific evidence for a causal
inference could be summarized, in any generality, by a sin-
gle number between 0 and | seems almost as far-fetched to
me as the idea that it could be summarized by a O (accept) or
a1 (reject).

Perhaps Fisher was thinking of the use of fiducial distrib-
utions as a way to summarize science, but I do not find this
view articulated in these debates; also, few have found the fidu-
cial perspective to be satisfactory in any generality (see, e.g.,
Savage 1976, sec. 4.6, and the ensuing discussions). The logic
underlying the fiducial perspective seems to work best when the
argument for it is presented very quickly and rubbed out betfore
one can think too hard about it, as in Cochran’s Fisher—Creasy
story!

An argument can be made that Fisher viewed the likelihood
function as such a summary, but I find the inability in principle
to integrate the likelihood over nuisance parameters to obtain
a marginal summary of an estimand to be major problem, es-
pecially in high-dimensional situations. To many, like mysclf,
who are sympathetic with the Bayesian argument, a posterior
distribution with clearly stated prior distributions is the most
natural way to summarize evidence for a scientific question.
Combining this summary with the costs of decisions then also
becomes natural and supports an expanded view of Fisher’s pre-
ceding statement.

I see here Fisher’s general resistance to acknowledge or use
the contributions of others as interfering with a clear delineation
between science and decisions, which he appears to have sup-
ported in principle. But this limitation in perspective is certainly
not an outright error on Fisher’s part. I conclude with an exam-
ple where Fisher’s failure to use Neyman’s potential outcomes
for causal inference in the context of “complex” randomized
experiments did lead to flawed advice.

7. COMPLEX EXPERIMENTS: “DIRECT” AND
“INDIRECT” CAUSAL EFFECTS

Consider the problem of adjusting for a “concomitant”
variable—an outcome variable that is not the outcome of pri-
mary interest, but may be “on the causal pathway” of the treat-
ment affecting the primary outcome variable, V. That is, the
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concomitant variable, C, is not a covariate but rather is some-
thing like a covariate in that we wish to “adjust” for it. For ex-
ample, we may wish to estimate the “direct” effect of treatment
versus control on Y for the set of units for which the treatment
does not effect C.

Fisher wrote about this problem in Design of Experiments
(DOE) from the first edition in 1935 to the last (8th) edition
in 1966. His views remained unchanged, even though he was
a discussant of Neyman’s RSS lecture on randomized experi-
ments (Neyman 1935), which used the potential outcome nota-
tion, and in my view would have helped to reveal the general
flaws in the following advice.

In DOE, Fisher (1935, 1954, 1956, 1966, chap. IX, sec. 55)

wrote:
In agricultural experiments involving the yield following different kinds of
treatments, it may be apparent that the yields of the different plots have been
much disturbed by variations in the number of plants which have established
themselves. If we are satisfied that this variation in plant number is not itself an
ctfect of the treatments being investigated [in which case plant number is a true
covariate], or if we are willing to confine our investigation to the effects on
yield, excluding such as flow directly or indirectly from effects brought about
by variations in plant number, then it will appear desirable to introduce into our
comparisons a correction which makes allowance, at least approximately, for
the variations in yield directly due to variation in plant number itself.

He also wrote about this in Statistical Methods for Research

Workers (1970, sec. 49.1, pp. 283-284), in a way that was con-
sistent with this previous quotation:
Thus, if we were concerned to study the effects of agricultural treatments upon
the purity index of the sugar extracted from sugar-beet, a variate which might be
much affected by concomitant variations in (a) sugar-percentage, and (b) root
weight, an analysis of covariance applied to the three variates, purity, sugar per-
centage, and root weight, for the different plots of the experiment, would enable
us to make a study of the effects of experimental treatments on purity alone; i.e.,
after allowance for any effect they may have on root weight or concentration,
without our needing to have observed in fact any two plots agreeing exactly in
both root weight and sugar percentage.

Fisher’s recommendation is to conduct an analysis of covari-
ance (ANCOVA) of Yops,i on W; and Cyps ;, Where Cops,; =
Wi Ci(1) + (1 — W) Ci(0). This analysis is equivalent to a re-
gression analysis of observed outcome on treatment indicator
and observed predictor, which was criticized in Section 4 for
its naivete in the context of observational studies. Essentially,
an ANCOVA compares the average observed Y;(1) with the av-
erage observed Y;(0) for units with a common value of Cops ;,
which generally does not estimate a causal effect of any kind,
because generally the resultant estimand does not satisfy the de-
finition for a causal estimand given in Section 2. The problem
with this approach is illustrated in Figures 2 and 3.

Suppose that Figures 2 and 3 represent very large random-
ized experiments of N units, for concreteness, say N plots; the
concomitant C is the number of plants established in each plot,
the primary outcome Y is the yield in each plot, the treatment is
a new fertilizer, and the control is the standard fertilizer. In each

Fraction Potential outcomes Observed data
of population C(1) Cc(0) Y(1) Y(0) w Cobs Yobs
1/4 3 2 10 10 0 2 10
1/4 3 2 10 10 1 3 10
1/4 4 3 12 12 0 3 12
1/4 4 3 12 12 1 4 12

Figure 2. An Example With a Treatment Effect on the Concomitant, C,
But No Treatment Effect on the Primary Outcome, Y.
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Fraction Potential outcomes Observed data
of population C(1) C(0) Y(1) Y(0) w Cobs Yobs
1/6 3 2 11 10 0 2 10
1/6 3 2 11 10 1 3 11
1/6 3 3 13 12 0 3 12
1/6 3 3 13 12 1 3 13
1/6 4 3 15 14 0 3 14
1/6 4 3 15 14 1 4 15

Figure 3. An Example With a Constant Treatment Effect on the
Outcome, Y, and a “Direct” Effect for Units With No Treatment
Effect on the Concomitant, C.

experiment, half of the units are randomly assigned to the ac-
tive treatment and half of the units are assigned to the control
treatment. That is, the assignment mechanism is ignorable with

Pr(W; = 11X;, Yi(1), Yi(0)) = Pr(W; = 0[X;, Yi(1), Yi(0))
=1/2 fori=1,...,N. (10)

The left set of columns in Figure 2 give the potential outcome
in the first experiment. The first two rows represent those N/2
units with common values of the potential outcomes, and so
randomly assigning them would result in half being assigned
to control, represented by the first row, and half being assigned
to treatment, represented by the second row, and analogously
for the second pair of rows. The resultant observed data are
represented in the right half of Figure 2. Each pair of rows
corresponds to a “principal stratum” using the terminology of
Frangakis and Rubin (2002), where each principal stratum is
defined by common values of C;(1) and C;(0). The left columns
reveal that for all units, there is a causal effect of treatment on
the concomitant variable, C, of size 1, but there is no effect on
the primary outcome variable ¥ for any unit. Because all units
experience a treatment effect on C and no effect on Y, the an-
swer to the question of the “direct” effect of treatment on Y,
after adjusting for C, seems to be a matter of definition, most
simply chosen to be 0.

An examination of the right set of columns in Figure 2,
however, reveals that conditioning on the observed value of
the concomitant, Cyps, which is equivalent to Fisher’s life-long
recommendation, leads to a contradictory conclusion: When
Cobs = 3, those plots that received the new treatment do worse,
a treatment effect of —2 (compare the second and third rows in
the observed data). Also in this case, the regressions of Yops i
on Cops,; in the W; = 0 and W; = 1 groups are linear and par-
allel, with constant treatment minus control difference equal
to —2. So the conclusion of Fisher’s recommended ANCOVA
is that the treatment’s effect on Y, after making allowance for
any effect on C, is negative! This clearly seems incorrect, as is
revealed by an examination of the potential outcomes in Fig-
ure 2.

The example in Figure 3 illustrates a flaw in Fisher’s pro-
posed solution even when there does appear to be a well-defined
“direct” treatment effect on Y after controlling for C. The ex-
ample is analogous to the one in Figure 2 except that first, there
is a constant treatment effect on ¥ of size 1 for all units, and
second, for one-third of the units, represented by the middle two
rows, there is no treatment effect on the concomitant, C. For the
other units, the treatment effect on the concomitant is 1; for the
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principal stratum where there is no treatment effect on the con-
comitant, the answer to the question about the direct effect of
treatment seems to be clear: It is size 1. Yet once again, Fisher’s
advice provides an incorrect answer, despite the parallel linear
regression lines in the W; = 0 and W; = 1 groups; the ANCOVA
of Yobs,; on W; and Copg ; implies that the “direct” causal effect
of treatment on the primary outcome, after accounting for the
effect of treatment on concomitant, is of size —1, which is the
average Yobs,; for the treated with Cops,; = 3 (the average Yobs.i
inrows 2 and 4, i.e., 12) minus the average Yyps,; for the controls
with Cops,; = 3 (the average Yobs ; in rows 3 and 5, i.e., 13).

Another way to see what is wrong with these analyses is to
realize, despite treatment being ignorable in these examples,
that forcing the conditioning on Coyps leads to a nonignorable
treatment assignment mechanism. For instance, from Figure 2,
we see that in this case, in contrast to (10), we have

Pr(Wi = HCobs,i» Yi(l), Y,'(O))
1 if Cops,i =3 and Y;(1) = 10

=11 if Cops,i=4 (In
0 otherwise.
Similarly, for the example depicted in Figure 3,
Pr(W; = 1]Cobs,i» Yi(1), Y;(0))
I if Copsi=3and ¥;(1)=11ori3
=11 it Cpi=4 (12)

0 otherwise.

Fisher’s ANCOVA is predicated on an ignorable assignment
mechanism because it implicitly assumes that the set of subjects
with any fixed value of Cyps ; are randomized into treatment and
control, which is not true from (11) and (12). A correct analy-
sis conditional on Cops,; has to account for the nonignorable
assignment mechanism created by this forced conditioning.

There are other valid ways to analyze data like these. One
way is to combine C and Y into one outcome variable, such
as the ratio Y/C. Another way is to consider (C,Y) as a bi-
variate outcome variable, which is related to, but definitely not
the same as, Fisher’s suggestion. A third way, and the one that
attempts to penetrate the treatment effect on Y after “adjust-
ing” for C, is to use the principal stratification approach of
Frangakis and Rubin (2002). For more on this approach, see
Rubin (2004) on “direct” and “indirect” causal effects, which
advocates a Bayesian analysis where the latent principal strata
are essentially mulitiply imputed, as well as the accompanying
discussion and rejoinder. Also see Frangakis, Rubin, and Zhou
(2002), where some of the invited discussion of the article ap-
pears to repeat Fisher’s flawed reasoning.

8. CONCLUSIONS REGARDING CAUSAL
INFERENCE USING POTENTIAL OUTCOMES

We have taken a short and idiosyncratic, but I hope inter-
esting, trip through the world of inference for causal effects—
idiosyncratic in that it clearly represents my own views and
the influence of various giants of statistics on these views.
Despite other approaches advocated by people whom I greatly
respect (e.g., Dawid 2000; Lauritzen 2004; Pearl 2000), the po-
tential outcomes formulation of causal effects, whether in ran-
domized experiments or in observational studies, has achieved
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widespread acceptance. The potential outcomes, together with
covariates, define the science in the sense that all causal esti-
mands are functions of these values. Assumptions are required
for causal inference, and stability (i.e., SUTVA) is the most
straightforward of these in many circumstances.

It is necessary to posit an assignment mechanism when draw-
ing causal inferences using probabilistic statements because at
least half of the potential outcomes are missing in any inves-
tigation, even after making the simplifying SUTVA assump-
tion. Randomized experiments have two special features that
make such inferences particularly easy to draw: ignorability and
propensities between O and 1. Fisher and Neyman each pro-
posed a method of inference for causal effects based solely on
the assignment mechanism; Fisher’s method involved signifi-
cance tests of sharp null hypotheses, whereas Neyman’s method
involved the repeated sampling expectations of statistics.

We can supplement the assignment mechanism with a model
on the science and thus adopt, in essence, a Bayesian frame-
work to inference for causal effects, which makes immediate
ties to Fisher’s contributions to likelihood theory based on mod-
els, even though Fisher himself never made this connection.
The Bayesian perspective is extremely flexible and is especially
convenient for summarizing the current state of knowledge
about the science in complex situations. This summarization of
knowledge can be, and 1 believe generally should be, viewed
as a enterprise distinct from making decisions, which involve
all sorts of trade-offs with various losses and gains, as Fisher
pointed out, often unfathomable at the time that the science is
being summarized.

When conducting causal inference, maintaining the distinc-
tion between observed values (e.g., concomitants such as Cj ops)
and which potential outcomes they reflect [e.g., C;(1) vs. C;(0)]
is critical for clear thinking. It is all too easy to slip into ignor-
ing the difference and reaching invalid conclusions, Data are
not only measurements, but also reflections of what they mea-
sure. A statement like “the value of Cepg is 3, but I'm not going
to tell you whether that’s a measurement of C(1) or C(0)” is
not generally wise or helpful. Scientific inferences change, in
general, when Cyps = 3 implies that C(1) = 3 versus when it
implies that C(0) = 3.

Even the brilliant Fisher was trapped by this to some extent,
because he failed to recognize important contributions from
Neyman and others he seemed to view as intellectually inferior.
As Fisher himself stated:

The example is a useful reminder of the truth that in general, a change in the
data [e.g., whether Cops 1s a realization of C(1) or C(0)] may be expected to
lead to a change in the inferences.

This was Fisher’s concluding line (1954, p. 213) in his criticism
of Monica Creasy’s discussion paper (1954), which started and
now completes our journey.

[Received October 2004, Revised October 2004. ]
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