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Quality 
 

• Quality is an important concept in industry that involves several factors and affects 

considerably the choices of a customer. 

 

• Statistical quality control is one of the main tools for monitoring and improving quality of 

goods. 

 

• One of the main areas of application of the statistical quality control is that of the process 

control. 

 

• The process control is usually based on standard statistical test procedures applied to 

quality control charts. 



Control chart for µ  

 

• The standard method to control the mean proceed as follows: 

o For any time interval we draw a sample of n  pieces and for this sample we compute 

the mean of the variable of interest, X , denoted by X . 

o The sample means are represented on a plot together with the expected mean ( 0µ ), the 

lower control limit (LCL) and  upper control limit (UCL)  

nz /LCL 2
2/0 σµ α−= ,       nz /UCL 2

2/0 σµ α+= , 

where α  is the probability of the type I error and 2/αz  is the )2/1(100 α− th percentile 

of the standard Normal distribution (usually we follow the σ3  rule and so we 

substitute 2/αz  with 3). 

o If a point is out of the control limits, we have to stop the process. 



Example 
 
• We expect that length of a certain product has average 740 =µ mm. 

 
• The process is followed by using samples of size 5=n  drawn each day. So, with the σ3  

rule and assuming 0001,02 =σ , the control limits are 

9865,735/0001,0374LCL =−=        0135,745/0001,0374UCL =+=  



Power of the control chart 
 

• The power of a control chart is usually measured through the average run length (ARL), 

equal to the average number of samples that we have to observe before the control charts 

shows that the process is out of control when it is true; 

β−
=

1
1

ARL , 

where )not true is |rejct not ( 00 µµβ P=  is the probability of the type II error. 

 

• The ARL increases when β  increses. 

 

• When the ARL is small, the control chart is powerful, in the sense that it requires a few 

samples to show that the process is out of control. 



• Usually the power of the chart increases with the sample size (n ) and with the frequency 
with that samples are drawn; so, it may be convenient to increase the sample size, but this 
is expensive and time consuming. 

 

• For the previous example, we have the following operating characteristic curve that show 
how the power of the chart varies with n  when the true mean (µ ) is different from the 

expected one ( 0µ ). 

 



• As we can see, the probability of the type II error ( β ) decreases when the sample size (n ) 

increases. 

 

• An alternative measure is the average time to signal (ATS) that is the average time, 

instead of the average number of samples, necessary to the control chart to show that the 

process is out of control; 

ARLATS ⋅= t , 

where t  is the time between sample draws. 

 

• By using ARL and/or ATS we can compare two control charts based on two different 

sampling schemes. 



Warning area 
 

• The probability of the type I error (α ) is usually fixed at a level close to 0 so that the 

chance of stopping the process when it is in control is very low. 

 

• However, when α  is very small, the control chart is not powerful enough, in the sense it 

is not easy that the chart shows that the process is out of control this is necessary. 

 

• To increase the power of a chart we usually make use the so-called warning limits that 

correspond to higher levels of α . These limits are often chosen with the σ2  rule: 

n/2LWL 2
0 σµ −=      and     n/2UWL 2

0 σµ += . 



• For the previous example we have 

LWL 74 2 0.0001/5 73,9910= − =        UWL 74 2 0.0001/5 74,0090= + =  

 

• If the process is in control, points in the warning area (between LWL and LCL and 

between UCL and UWL) are uncommon and so, with the aim of increasing the power of 

the chart, we stop the process if we have many points in this area. 



When 2σ  is not known 

 

• If we have no idea of the value of the population variance ( 2σ ), we can replace this 

parameter with an estimate based on m  samples drawn when the process was surely under 

control, the so-called phase I. 
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• The variance estimate at issue is 
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 is the mean of all the observations in phase I. 

 

• Consequently, the control limits become 

nS /3LCL 2
0 −= µ    and   nS /3UCL 2

0 += µ  

while the warning limits will be 

nS /2LWL 2
0 −= µ    and   nS /2UWL 2

0 += µ  



When 0µ  and 2σ  are not known 

 

• When we also do not know the population mean (
0

µ ) when we process is in control, we 

can still use a suitable number of m  samples drawn in phase I and substitute 0µ  with the 

estimate X . 

 

• Consequently, the control limits become (3σ  rule) 

nSX /3LCL 2−=    and   nSX /3UCL 2+=  

while the warning limits will be 

2LWL 2 /X S n= −    and   2UWL 2 /X S n= −  



Possible Problems 
 

• All the previous procedures are based on the assumption of normality of the variable of 

interest, X . In many situations, however, the actual distribution may significantly depart 

from normality.  

 

• The consequences are usually that: 

o the actual level a is different from the nominal one; 

o the power to detect process shifts is normally lower than expected. 

 

• Some control charts have been proposed to deal with these situations. One of the most-

well known is the bootstrap control chart that, however, does not work so well as 

expected. 

 

• We propose a control charts based on the empirical likelihood (EL). 



Empirical Likelihood 
 

• Empirical Likelihood (EL) is a nonparametric method to test hypotheses on a population 

parameters (Owen, 1988). 

 

• The approach is based on the a sort of nonparametric likelihood that, when the parameter 

of interest is the population mean ( µ ), may be expressed as 
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where )',,( 1 nππ …=p  is a vector of probabilities summing up to 1. 

 

• The function at issue is in practice the profile likelihood (maximum of the likelihood with 

respect to p ) of a multinomial model that places a weight iπ  on any observation iX . 



• An interesting property is that )(µL  reaches its maximum when µ  is equal to the sample 

mean X . This happens when all the weights are equal, 
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and so nnXL −=)( . 

 

• This allows to consider the non parametric likelihood ratio 

∏
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to the hypothesis 00 : µµ =H  versus 01 : µµ ≠H , without assuming any specific 

distribution for X .  



• The likelihood ratio )(µR  is always between 0 and 1 and in general the larger the value 

of )(µR , the higher the evidence provided by the data in favor of µ  as the true value of 

the population mean. 

 

• So, we reject the hypothesis 00 : µµ =H  in favor of 01 : µµ ≠H  when )( 0µR  is smaller 

than a suitable threshold, 0r . 

 

• The most used criterion to define 0r  is based on the asymptotic theory. It is in fact 

possible to prove that under 0H  

2
100 ))(log(2)( χµµλ →−= DR . 

This is an extension of the Wilk (1938) theorem which is well-known in parametric 

inference. 



• So we can formulate the test as 

reject 0H  if αµλ c≥)( 0  

where αc  is the 100)1( α− -th percentile of the 2
1χ  distribution. 

 

• Unfortunately, the convergence of the true distribution of )( 0µλ  to the 2
1χ  distribution is 

quite slow and so some methods have been developed to find more precise thresholds for 

)( 0µλ . The most used methods are based on: 

o Bartlett correction 

o Bootstrap method 



Empirical Likelihood control charts 
 

• When we apply EL to control charts, we cannot use a calibration based on the asymptotic 
2
1χ  distribution since the sample size is usually very small. 

 

• However, can take advantage of the presence of phase I observations to calibrate as 

follows: 

o draw with replacement T  samples of size n  from the set of all the nm  

observations in phase I and compute )( 0µλ  for any of them obtaining 

)(,),( 001 µλµλ T…  

o the upper control limit for the chart (UCL) is equal to the )1(100 α− -th percentile 

of the set of test statistics above. 



• The percentile may be computed by arranging in increasing order the test statistics 

)( 0µλ ’s and then taking the )1( α−T  largest value. 

 

• The ordered set will be denoted by 

)(,),( 0)(0)1( µλµλ T…  

and then the percentile of interest will be 

)( 0))1(( µλ α−T . 

 

• An alternative method is based on the Kernel smoother: we first make the empirical 

distribution of )( 0µλ  continuous by the smoother and then we take the )1(100 α− -th 

percentile of the resulting distribution. 



• The EL control chart is obtaining by representing the values of )( 0µλ  for any observed 

sample in phase II. This control chart should not depend on the assumption of normality. 
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Performance comparison 
 

• We carried on a simulation study to assess the performance of the proposed control chart 

with the X-bar chart and the bootstrap chart. 

 

• The simulation is based on 100C =  charts generated under several distributions and with: 

o sample size:                                             5=n  

o number of observations in phase I:    20,50,100mn =  

o number of samples in phase II:                000,10=l  

 
• The value of the type I error we considered is 005.0=α . 



Standard Normal distribution   )1,0(N  

 

 
 

 Type of chart 

mn  X-bar Bootstrap EL EL-Kernel 

20 0.0235 0.0319 0.0172 0.0085 

50 0.0101 0.0137 0.0083 0.0043 

100 0.0075 0.0094 0.0068 0.0068 



Gamma distribution   (1.5,20)G  
 

 
 

 Type of chart 

mn  X-bar Bootstrap EL EL-Kernel 

20 0.0508 0.0520 0.0301 0.0298 

50 0.0354 0.0293 0.0206 0.0205 

100 0.0239 0.0203 0.0171 0.0170 

 



t-Student distribution   )3(t  
 

 
 

 Type of chart 

mn  X-bar Bootstrap EL EL-Kernel 

20 0.0447 0.0658 0.0169 0.0073 

50 0.0238 0.0290 0.0086 0.0037 

100 0.0212 0.0212 0.0082 0.0081 

 



Symmetric bimodal distribution   N(4,1) 1/2 N(0,1) 1/2 +  
 

 
 

 Type of chart 

mn  X-bar Bootstrap EL EL-Kernel 

20 0.0163 0.0195 0.0114 0.0018 

50 0.0070 0.0100 0.0083 0.0030 

100 0.0041 0.0079 0.0065 0.0064 



Skewed bimodal distribution   1/3)) (4, 0.05 (0,1) 0.95 NN +  
 

 

 
 Type of chart 

mn  X-bar Bootstrap EL EL-Kernel 

20 0.0388 0.0151 0.0153 0.0073 

50 0.0136 0.0132 0.0076 0.0023 

100 0.0112 0.0102 0.0074 0.0074 



Conclusions 
 

• Bootstrap chart is usually the worst option. 

 

• EL and EL-Kernel charts usually behave better than the other two charts and so we 

suggest the use of the proposed approach especially when we are aware of the distribution 

of the variable of interest. 

 

• The improvement of Kernel for EL is worthwhile, especially when the number of 

observations in Phase I (mn ) is small, 20 say. 

 

• The most difficult situation to deal with seems to be the Gamma one. In this case no chart 

works properly; this is probably due to the high skewness and kurtosis of the distribution. 

However, even in this case, EL based charts behave better than X-bar and Bootstrap 

charts.  



Further developments 

 

 

• Our aim for the future is that extending the proposed approach to 

o control population variability (univariate case) 

o deal with mean vectors and covariance matrices 


