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Abstract

For a class of latent Markov (LM) models for discrete variables having a longitudinal struc-

ture, we introduce an approach for formulating and testing linear hypotheses on the transition

probabilities of the latent process. For the maximum likelihood estimation of a LM model

under hypotheses of this type, we outline an EM algorithm based on well-known recursions

in the hidden Markov literature. We also show that, under certain assumptions, the asymp-

totic null distribution of the likelihood ratio (LR) statistic for testing a linear hypothesis on

the transition probabilities of a LM model, against a less stringent linear hypothesis on the

transition probabilities of the same model, is of chi-bar-squared type. As a particular case,

we derive the asymptotic distribution of the LR statistic between a latent class model and its

LM version, which may be used to test the hypothesis of absence of transition between latent

states. The approach is illustrated through a series of simulations and two applications, the

first of which is based on educational testing data collected within the National Assessment of

Educational Progress 1996, and the second on data, concerning the use of marijuana, which

have been collected within the National Youth Survey 1976-1980.
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∗Istituto di Scienze Economiche, Università di Urbino, Via Saffi, 42, 61029 Urbino, Italy, email:

Francesco.Bartolucci@uniurb.it

1



1 Introduction

The latent Markov (LM) model was introduced by Wiggins (1973) for the analysis of longitudinal

data and has been successfully applied in several fields, such as psychological and educational

measurement (Langeheine, et al., 1994, Vermunt et al., 1999), sociology (Van de Pol and Lange-

heine, 1990, Humphreys, 1998, Mannan and Koval, 2003), medicine (Auranen et al., 2000, Cook

et al., 2000), criminology (Bijleveld and Mooijaart, 2003) and the analysis of customer behaviour

(Poulsen, 1990); for a review see Langeheine (2002). The basic assumption of this model is that

any occasion-specific response variable depends only on a discrete latent variable, which in turn

depends on the latent variables corresponding to the previous occasions according to a first-order

Markov chain. Therefore, the LM model may be seen as an extension of a Markov chain model

which allows for measurement errors, but also as an extension of the latent class (LC) model

(Lazarsfeld and Henry, 1968, Goodman, 1974), in which the assumption that any subject belongs

to the same latent class throughout the survey is suitably relaxed. As such, this model en-

ables several aspects to be taken into account which characterize longitudinal studies, i.e. serial

dependence between observations, measurement errors, and unobservable heterogeneity.

The LM model may be constrained in several ways in order to make it more parsimonious

and easier to interpret. In particular, we deal with a class of LM models in which: (i) the

conditional distribution of the response variables given the latent process may be formulated

as in a generalized linear model; (ii) the latent process is time-homogeneous with transition

probabilities that may be formulated as in a linear probability model. For the maximum likelihood

(ML) estimation of these models, we outline an EM algorithm (Dempster et al., 1977), in which

the E-step is based on well-known recursions in the hidden Markov literature (see MacDonald

and Zucchini, 1997) and the M-step is based on Newton-Raphson type iterative algorithms. In

order to simplify the implementation of the algorithm, we often make use of the matrix notation

and we give some simple rules to avoid numerical instability when long sequences of response

variables are analysed. We also deal with the asymptotic distribution of the likelihood ratio (LR)

statistic for testing linear hypotheses on the parameters of the model assumed on the transition

probabilities of the latent process. Among these hypotheses, those formulated by constraining

certain transition probabilities to be equal to 0 are of particular interest. An example is the

hypothesis of no transition between latent states, which may be tested by comparing a LC model

with a LM model based on a transition matrix with at least one off-diagonal element allowed

to be positive. Note that hypotheses of this type cannot be tested within more conventional

approaches, in which the transition probabilities are modelled through a link function based, for

instance, on multinomial logits (Vermunt et al., 1999). On the other hand, the parameters may
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be on the boundary of the parameter space under these hypotheses and therefore we are dealing

with an inferential problem under non-standard conditions (Self ad Liang, 1987), which typically

occurs in constrained statistical inference (Silvapulle and Sen, 2004). By applying some results

known in this literature, we show that the LR statistic in question has an asymptotic chi-bar-

squared distribution under the null hypothesis. The finite sample accuracy of the inference based

on this asymptotic distribution is investigated through a series of simulations.

In short, the main contribution of the present paper is the formulation of a general framework

for likelihood inference under linear hypotheses on the transition probabilities of a class of LM

models. Within this framework, we also allow for hypotheses expressed by constraining one or

more probabilities to be equal to 0. Hypotheses of this type are of interest in many situations.

To our knowledge, a framework like this has not been previously considered in the literature

concerning LM models. It has not been explicitly considered either within other inferential

approaches or within the hidden Markov literature, which is strongly related to the literature

concerning LM models (for a review see Archer and Titterington, 2002, and Scott, 2002). In

contrast, ML estimation of LM models has been considered since long time (Poulsen, 1982) and,

under standard conditions, the use of the LR statistic for testing hypotheses on the parameters

of a LM model has already been suggested (see, for instance, Visser, 2002).

The paper is organized as follows. The class of LM models is illustrated in Section 2 and ML

estimation of these models in Section 3. In the latter we also deal with the Fisher information

matrix and the problem of classifying subjects on the basis of the latent states. The asymptotic

distribution of the LR statistic under linear hypotheses on the transition probabilities is dealt

with in Section 4. Finally, two applications involving real datasets are illustrated in Section 5

and the main conclusions are drawn in Section 6.

2 A class of homogeneous latent Markov models

Let Y = {Yt, t = 1, . . . , s} be a sequence of s discrete random variables with support {1, . . . , d}.
The basic assumption of the LM model is that these variables are conditionally independent

given a latent process X = {Xt, t = 1, . . . , s} which follows a first-order Markov chain with state

space {1, . . . , c}. This assumption obviously makes sense only if the elements of Y correspond

to measurements repeated at different occasions on the same subject. This is the case, not only

of longitudinal data, but also of data derived from the administration of a set of test items to a

group of subjects, which frequently arise in psychological and educational measurement (see also

Example 1 in Section 2.1). In the latter case, a LM model may be validly applied only if the items

are administered to all the subjects in the same order. Note also that assuming that the latent
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process follows a first order Markov chain is equivalent to assuming that any latent variable Xt

is conditionally independent of X1, . . . , Xt−2 given Xt−1. This assumption is seldom considered

restrictive and, also because of its easy interpretation, is preferred to more complex assumptions

on the dependence structure of the latent variables. In this paper, we also assume that the latent

process is time-homogeneous, so that the transition probabilities πx|w = p(Xt = x|Xt−1 = w),

w, x = 1, . . . , c, do not depend on t, whereas the initial probabilities λx = p(X1 = x), x = 1, . . . , c,

are completely unconstrained.

The assumptions above imply that the distribution of X may be expressed as

p(x) = p(X = x) = λx1

∏

t>1

πxt|xt−1
, (1)

while the conditional distribution of Y given X may be expressed as

p(y|x) = p(Y = y|X = x) =
∏

t

φt,yt|xt
, (2)

where φt,y|x = p(Yt = y|Xt = x). Consequently, for the manifest distribution of Y we have the

following expression

p(y) = p(Y = y) =
∑
x1

φ1,y1|x1
λx1

( ∑
x2

φ2,y2|x2
πx2|x1

· · ·
(∑

xs

φs,ys|xs
πxs|xs−1

))
.

Using the matrix notation, this probability may also be expressed as p(y) = q(y6s)′1s, where 1j

is a column vector of j ones and, for t = 1, . . . , s, y6t = {yj , j = 1, . . . , t} and q(y6t) is a column

vector with elements p(Xt = x, Y1 = y1, . . . , Yt = yt), x = 1, . . . , c. This vector may be computed

through the following recursion

q(y6t) =

{
diag(φ1,y1

)λ if t = 1
diag(φt,yt

)Π′q(y6t−1) otherwise
, (3)

with λ = {λx, x = 1, . . . , c} denoting the initial probability vector, Π = {πx|w, w, x = 1, . . . , c}
denoting the transition probability matrix and φt,y = {φt,y|x, x = 1, . . . , c} denoting the vector

of the conditional probabilities of the response variables given the latent process. When s is very

large, the elements of q(y6t) could become so small as to vanish during recursion (3). To avoid

this, we can multiply the quantity obtained at any step of this recursion by a suitable constant

a. Thus, the vector computed at the t-th step of the recursion, denoted by q∗(y6t), will be equal

to atq(y6t), while p∗(y) = q∗(y6s)′1s will be equal to asp(y). As will be clear in the following,

this dummy renormalization does not affect the estimation process.

In the basic LM model illustrated above, the conditional probabilities of the response variables

given the latent process and the transition probabilities between the latent states are completely

unconstrained. In many situations, however, it makes sense to parameterize these probabilities

in order to give a more parsimonious and easily interpretable LM model.
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2.1 Modelling conditional probabilities of the response variables

Let φ be a column vector with elements φt,y|x, t = 1, . . . , s, x = 1, . . . , c, y = 1, . . . , d, arranged

by letting the index y run faster than x and the latter run faster than t and let η = η(φ) be a

link function that maps φ onto Rsc(d−1). We assume that

η = Zγ, (4)

where Z is a full rank design matrix and γ is a vector of parameters. Obviously, regardless of

the specific choice of the link function, letting Z = Isc(d−1), with Ij denoting an identity matrix

of dimension j, is equivalent to assuming that the conditional distribution of any Yt given Xt is

unconstrained. More interesting cases are illustrated below.

Example 1. In the case of binary variables, by parameterizing the conditional distribution of Yt

given Xt = x through the logit ηt|x = log(φt,2|x/φt,1|x) and assuming that

ηt|x = ψx − δt, t = 1, . . . , s, x = 1, . . . , c, (5)

we can formulate a LM version of the Rasch (1961) model, the most well-known Item Response

Theory (IRT) model (see, among others, Hambleton and Swaminathan, 1985, and De Boeck and

Wilson, 2004). This model finds its natural application in educational assessment, when a group

of examinees has to be assessed on the basis of the responses they provide to a series of test

items. In this setting, the parameter ψx may be interpreted as the ability of the subjects in the

x-th latent class and δt as the difficulty of the t-th item. In a similar way, we can formulate a

multidimensional version of the Rasch model based on one of the parameterizations considered by

Kelderman and Rijkes (1994). Note that, by assuming that the latent process follows a Markov

chain, we allow a subject to move from one latent class to another; this is not allowed within

the LC formulation of the Rasch model studied by Lindsay et al. (1991). Thus, we take into

account the possibility of an implicit learning phenomenon or of an item which may provide clues

for responding to other items. In these cases, the assumption of local independence (LI), which

is crucial in IRT, is violated; for a discussion see Hambleton and Swaminathan (1985, Sec. 2.3).

By means of the proposed approach, we can obviously test for the presence of phenomena of this

type. ¤

Example 2. When the response variables have more than two levels, we can parameterize the

conditional distribution of Yt given Xt = x through logits with the first category as baseline, i.e.

ηt,y|x = log(φt,y+1|x/φt,1|x), and assume that

ηt,y|x = ψx − δt,y, t = 1, . . . , s, x = 1, . . . , c, y = 1, . . . , d− 1.
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However, when the response variables have an ordinal nature, global logits are more suitable; these

logits are based on the comparison between the survival function and the distribution function

for any possible cut-point y, i.e.

ηt,y|x = log
φt,y+1|x + · · ·+ φt,d|x
φt,1|x + · · ·+ φt,y|x

, y = 1, . . . , d− 1;

see also Samejima (1996). ¤

In the present approach, we also allow for inequality constraints of the type Kγ > 0k on the

parameters γ, where K is a full rank matrix with k rows and 0j denotes a vector of j zeros. The

main use of these constraints is for making the latent states uniquely identifiable.

Example 3. If the same logit link function considered in Example 1 is used to parametrize the

distribution of a set of binary response variables, we can require that

ηt|1 6 · · · 6 ηt|c, t = 1, . . . , s, (6)

so that the latent states are ordered from that corresponding to the smallest probability of

success to that corresponding to the largest probability of success. We may also combine this

requirement with a Rasch parametrization of type (5). In this case, we need a reduced set of

inequality constraints, ψ1 6 · · · 6 ψc, to ensure that (6) holds. ¤

2.2 Modelling transition probabilities

Let π = vec(Π), where vec(·) is the row vector operator, and ρ denote the sub-vector of π in

which the diagonal elements of Π are omitted because redundant and note that π = a + Aρ,

with a and A defined in Appendix A1. We assume that

ρ = Wβ, (7)

where W is a full rank matrix of size c(c− 1)× b with at most one positive element in any row

and all the other elements equal to 0. Note that we are formulating a linear model directly on the

transition probabilities and not on a vector of parameters related to such probabilities through

a link function that maps them onto Rc(c−1). However, as already mentioned in Section 1, our

approach allows the formulation of the hypothesis that one or more elements of Π are equal to

0. On the other hand, in order to ensure that all the transition probabilities are non-negative,

we have to impose suitable restrictions on the parameter vector β. Due to these restrictions, we

are not in a standard inferential problem in order to derive the asymptotic distribution of the LR

statistic for testing hypotheses on β; this will be discussed in detail in Section 4. In particular,

it may be easily verified that the constraint that all the diagonal elements of Π are non-negative
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is equivalent to the constraint TWβ 6 1c, with T = Ic ⊗ 1′c−1. Moreover, since we require W

to have at most one positive element in any row, the constraint that all the off-diagonal elements

of Π are non-negative may simply be expressed as β > 0b. As shown by the examples below,

this requirement of the design matrix W does not limit the applicability of the present class

of models. Note that the model in which the transition probabilities are unconstrained may be

formulated by letting W = Ic(c−1).

Example 4. A significant reduction of the number of parameters of a LM model may be achieved

by constraining all the off-diagonal elements of the transition matrix Π to be equal to each other;

with c = 3, for instance, we have

Π =




1− 2β β β

β 1− 2β β

β β 1− 2β


 . (8)

This constraint may be formulated by letting W = 1c(c−1). A less stringent constraint is that Π

is symmetric; this is equivalent to assuming that the probability of transition from latent state w

to latent state x is the same as that of the reverse transition:

Π =




1− (β1 + β2) β1 β2

β1 1− (β1 + β3) β3

β2 β3 1− (β2 + β3)


 .

This hypothesis may be formulated by letting W = U + L, where U and L consist, respectively,

of the subset of columns of Ic(c−1) corresponding to the elements of ρ which are upper triangular

and lower triangular in Π (excluding those in the diagonal). ¤

Example 5. When the latent states are ordered in a meaningful way by assuming, for instance,

that (6) holds, it may be interesting to formulate the hypothesis that a subject in latent state w

may move only to latent state x = w + 1, . . . , c or to x = w + 1. With c = 3, for instance, we

have respectively

Π =




1− (β1 + β2) β1 β2

0 1− β3 β3

0 0 1


 and Π =




1− β1 β1 0

0 1− β2 β2

0 0 1


 .

The first hypothesis may be formulated by letting W = U and the second one by letting W equal

to a suitable subset of columns of U . Another formulation which is appropriate with ordered

states is based on the assumption that, for any w and x, the probability πx|w is proportional to

2−|x−w| and therefore decreases when the distance from w and x increases, i.e.

Π =
1
4




4− 3β 2β β

2β 4− 4β 2β

β 2β 4− 3β


 .

7



In this case W = ( 2−1i1 · · · 2−(c−1)ic−1 ), where ij is obtained by summing the columns of

Ic(c−1) corresponding to the elements πx|w of ρ with |x− w| = j. ¤

2.3 Parameter space

By combining different choices of the parametrization of the conditional distribution of the re-

sponse variables (given the latent process) and of the transition probabilities we give rise to a

class of LM models which obviously includes the basic LM model illustrated at the beginning

of this section. We recall that these parametrizations are formulated as η = Zγ, Kγ > 0k,

for a suitable chosen link function η = η(φ), and ρ = Wβ. Therefore, the vector of the

non-redundant parameters of any of these models may be expressed as θ = (α′, β′,γ ′)′, where

α = {log(λx+1/λ1), x = 1, . . . , c− 1} is a vector of logits for the initial probabilities of the latent

states.

An important point is the shape of the parameter space. We have that

θ ∈ Θ = A× B × C,

where A = Rc−1, B = {β : β > 0b, TWβ 6 1c} and C = {γ : Kγ > 0k}. This notation will be

useful in Section 4 to illustrate the derivation of the asymptotic distribution of the LR statistic

for testing linear hypotheses on β.

3 Maximum likelihood estimation

Let ny be the frequency of the response configuration y in a sample of n subjects, let Y be the

set of the distinct response configurations observed at least once and let n = {ny, y ∈ Y} be the

vector of the corresponding frequencies. By assuming that these subjects are independent of each

other, the log-likelihood of any model in the class of LM models outlined in the previous section

may be expressed as

`(θ) =
∑

y∈Y
ny log[p(y)],

where p(y) is computed as a function of θ by using recursion (3). Note that, since the cardinality

of Y is always less than or equal to n, `(θ) may even be computed for large values of s, provided

that n is reasonable. Note also that, if a dummy renormalization is used in recursion (3), the

log-likelihood of the model may be computed on the basis of the renormalized probabilities p∗(y)

as
∑

y∈Y ny log[p∗(y)]− ns log(a), where the last term does not depend on θ and therefore may

be omitted.

In the following, we show how, in order to estimate θ, we can maximize `(θ) by means of an

EM algorithm (Dempster et al., 1977). We also deal with the Fisher information matrix and the
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estimation of class membership probabilities which may be used to classify subjects on the basis

of the response configurations they provide.

3.1 The EM algorithm

Suppose that we knew the frequencies mx,y’s of the contingency table in which the subjects are

cross-classified according to the latent configuration x and the response configuration y. We

could then compute the complete data log-likelihood

`†(θ) =
∑

x∈X

∑

y∈Y
mx,y log[p(y|x)p(x)], (9)

where X is the support of X and p(y|x) and p(x) are defined, respectively, in (2) and (1). The

following decomposition holds

`†(θ) = `†1(α) + `†2(β) + `†3(γ), (10)

where

`†1(α) =
∑

x

fx log(λx)

`†2(β) =
∑
w

∑
x

gw,x log(πx|w)

`†3(γ) =
∑

t

∑
x

∑
y

ht,x,y log(φt,y|x),

with fx denoting the number of subjects which at the first occasion are in the latent state x, gw,x

denoting the number of transitions from latent state w to latent state x and ht,x,y denoting the

number of subjects which at occasion t are in latent state x and provide response y.

Remark 1 Since we assume that all the probabilities λx and φt,y|x are strictly positive, we may

always compute `†1(α) and `†3(γ). In contrast, since we may have one or more transition proba-

bilities πx|w equal to 0, computing `†2(β) requires special care. Therefore, we use the convention

that, if πx|w = 0 by assumption, gw,x log(πx|w) ≡ 0 for all possible values of gw,x, whereas, if

πx|w = 0, but not by assumption, gw,x log(πx|w) is set equal to 0 when gw,x = 0 and to −∞ when

gw,x > 0. Thus, a necessary condition for a vector β̃ to maximize `†2(β) is that the corresponding

probabilities π̃x|w not constrained to be 0 by assumption are greater than 0 for any w and x such

that gw,x > 0.

Because of decomposition (10), the vector θ̃ = (α̃′, β̃
′
, γ̃)′ which maximizes `†(θ) may be

found by maximizing its components separately as follows:

• Maximization of `†1(α): Simply set α̃ equal to the vector {log(fx+1/f1), x = 1, . . . , c−1};

9



• Maximization of `†2(β): Let π̄ be the sub-vector of π whose elements are not constrained

to 0 under (7) and let ḡ be the corresponding vector with elements gw,x and note that

π̄ = Bπ, where B is obtained by selecting a suitable subset of rows from the matrix Ic2 .

Consequently, because of Remark 1, we can express the log-likelihood at issue as

`†2(β) = ḡ′ log(π̄) = ḡ′ log[B(a + AWβ)] + constant.

Provided all the elements of ḡ are strictly positive, we also have that `†2(β) tends to−∞ when

one or more elements of π̄ approach 0; therefore, the vector β̃ that maximizes this function

must be an interior point of the space B defined in Section 2.3. Moreover, for any interior

point β of B, the second derivative of `†2(β), equal to −W ′A′B′diag(π̄)−2diag(ḡ)BAW , is

negative definite and therefore this function has a unique maximum. This maximum may

be found by means of a Fisher-scoring algorithm that at any step updates the estimate of

β as

β(0) + [F †
2(β

(0))]−1s†2(β
(0)),

where β(0) denotes the estimate of β at the end of the previous step and

s†2(β) = W ′A′B′diag(π̄)−1ḡ

F †
2(β) = W ′A′B′diag[B(ġ ⊗ 1c−1)]diag(π̄)−1BAW ,

with ġ = {gw,·, w = 1, . . . , c}, gw,· =
∑

x gw,x, are, respectively, the score vector and the

Fisher information matrix for `†2(β). When one or more elements of ḡ are equal to 0, the

maximum of `†2(β) might be attained at a β̃ having one or more elements equal to 0 and

therefore the algorithm above must be appropriately modified. A simpler solution consists

in adding a small positive number, e.g. 10−8, to all the elements of ḡ, so that the same

algorithm may be used without further adjustments. We observed that the effect on the

solution is usually negligible and no extra time is required for the implementation.

• Maximization of `†3(γ): To take into account the presence of inequality constraints of the

type Kγ > 0k on the parameter vector γ, this maximization is performed by means of an

algorithm based on the solution of a series of constrained least squares problems. At any

step of this algorithm, the estimate of γ is updated by solving

min
Kγ>0k

(γ −w(0))′F †
3(γ

(0))(γ −w(0)),

where w(0) = γ(0) + [F †
3(γ

(0))]−1s†3(γ
(0)) is the working dependent variable, γ(0) is the

estimate of γ at the end of the previous step and s†3(γ) and F †
3(γ) are, respectively, the
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score vector and the Fisher information matrix for `†3(β). The latter two are given by

s†3(γ) = Z ′D(η)′diag(φ)−1h

F †
3(γ) = Z ′D(η)′diag(ḣ⊗ 1d)diag(φ)D(η)Z,

where the vector h has elements ht,x,y arranged as in φ, D(η) is the derivative matrix of φ

with respect to η′ and ḣ is a column vector with elements ht,x,· =
∑

y ht,x,y, t = 1, . . . , s, x =

1, . . . , c, arranged by letting the index x run faster than t. For a detailed description of this

constrained maximization algorithm in similar contexts, see Dardanoni and Forcina (1998)

and Bartolucci and Forcina (2000). Note that, when there are no inequality constraints on

γ, the algorithm reduces to the usual Fisher-scoring algorithm. Moreover, when we have

no restriction on the conditional distribution of any Yt given Xt, i.e. Z = Isc(d−1), we have

an explicit solution for γ̃ or, equivalently, for η̃.

Since the frequencies fx’s, gw,x’s and ht,x,y’s in (9) are unknown, the EM algorithm maximizes

`†(θ) as above (M step), once these frequencies have been substituted with the corresponding

conditional expected values given the observed data and the current value of the parameters

(E step). This process is iterated until convergence in `(θ). At the E step, in particular, the

conditional expected values at issue are obtained as:

E(Fx|n) =
∑

y∈Y
nyr1(x|y)

E(Gw,x|n) =
∑

y∈Y
ny

∑

t>1

rt(w, x|y)

E(Ht,x,y|n) =
∑

y∈Y
nyI(yt = y)rt(x|y),

where I(·) is the indicator function, rt(x|y) = p(Xt = x|Y = y) and rt(w, x|y) = p(Xt−1 =

w, Xt = x|Y = y). Let Rt(y), t = 2, . . . , s, be the c× c matrix with elements rt(w, x|y) arranged

by letting w run by row and x by column. This matrix may be easily computed through the

following backward recursion which is well known in the hidden Markov chain literature (see

Baum et al., 1970, Levinson et al., 1983, and MacDonald and Zucchini, 1997, Sec. 2.2):

Rt(y) = diag[q(y6t−1)]Πdiag(φt,yt
)diag[r(y>t)]/p(y), t = 2, . . . , s, (11)

where y>t = {yj , j = t + 1, . . . , s} and

r(y>t) =

{
1c if t = s

Πdiag(φt+1,yt+1
)r(y>t+1) otherwise

. (12)

When s is very large, this recursion may require a dummy renormalization. This may be per-

formed again by multiplying the quantity computed at any step of (12) by a suitable constant a.
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The resulting vector computed at the t-th step, r∗(y>t), may be used instead of r(y>t) in (11),

provided that q(y6t−1) and p(y) are substituted with the corresponding renormalized quantities

q∗(y6t−1) and p∗(y).

Finally, note that any M step consists in solving a series of simple maximization problems

which have a unique solution. Therefore, along the same lines as Shi et al. (2005), it is possible

to prove that the observed log-likelihood `(θ) has increased after any EM step and that the above

algorithm converges to a local maximum of this function. However, this local maximum cannot

be guaranteed to correspond to the global maximum since, as for any other latent variable model,

the likelihood may be multimodal. As usual, this problem may be addressed by trying different

initializations of the algorithm and then choosing θ̂, the parameter value which at convergence

gives the highest value of `(θ), as the ML estimate of θ. On the other hand, a small simulation

study, the results of which are not reported here, showed us that the chance of there being more

than one local maximum is usually low when the number of observations is large in comparison

to the number of parameters and the assumed model holds.

3.1.1 Initialization of the algorithm

We observed that an effective strategy to initialize the above EM algorithm is by performing the

first E step with probabilities φt,y|x’s, λx’s and πx|w’s chosen as follows:

• φt,y|x = ex,y nt,y/
∑

j ex,j nt,j , where nt,y is the observed frequency of Yt = y and the coeffi-

cient ex,y increases with y when x > (c + 1)/2, decreases with y when x < (c + 1)/2 and is

constant in y when x = (c + 1)/2.

• λx = 1/c for any x;

• πx|w = 1 − τ when w = x and πx|w = τ/(c − 1) otherwise, where τ is a suitable constant

between 0 and 1.

If it is necessary to try different initializations of the EM algorithm, these probabilities may be

generated at random by drawing any block of them summing to 1 from a Dirichlet distribution

with parameters defined according to the rules given above. For instance, the starting value of

λ could be drawn from a Dirichlet distribution with parameter vector proportional to 1c, the

first row of Π could be drawn from a Dirichlet distribution with parameter vector proportional

to ((1− τ), τ/(c− 1), . . . , τ/(c− 1))′ and so on.

12



3.2 Fisher information matrix, standard errors and local identifiability

The Fisher information matrix of the observed data may be expressed as

F (θ) = nQ(θ)′diag(p)−1Q(θ), (13)

where p is a vector with elements p(y) for any y arranged in lexicographical order and Q(θ) is

the derivative matrix of this vector with respect to θ′ (see Appendix A2). In particular, we are

usually interested in F (θ̂), i.e. the Fisher information computed at the ML estimate of θ, which

may be used for computing standard errors and checking identifiability; this matrix is also used

within the testing procedure illustrated in Section 4. Note that when s is large, F (θ̂) cannot be

computed as in (13). In this case, we can validly use the empirical variance-covariance matrix of

the score, instead of F (θ̂); see also McLachlan and Peel (2000, Sec. 2.15).

The standard error for a parameter estimate may be computed as the square root of the

corresponding diagonal element of F (θ̂)−1. However, if the true value of θ is close to the boundary

of the parameter space Θ, in this way we can considerably overestimate the true standard error.

On the other hand, knowledge of standard errors for the parameter estimates is relatively less

important in this situation since the distribution of the estimators may depart significantly from

normality, and therefore even though these standard errors are known, they cannot be validly

used to construct confidence intervals and testing hypotheses in the usual way; for a discussion

on this issue see Silvapulle and Sen (2004, Sec. 4.9).

The information matrix can also be used for checking local identifiability of the model at θ̂;

this is a weaker condition than global identifiability on which literature on latent variable models

has focused since long time (see, for example, McHugh, 1956, and Goodman, 1974). In particular,

a commonly accepted procedure for checking that the model is locally identifiable at θ̂ consists

in checking that F (θ̂) is of full rank. This is essentially equivalent to checking that the Jacobian

Q(θ̂) is of full rank; see also Rothenberg (1971).

3.3 Estimation of class membership probabilities and classification

Once a certain LM model has been fitted, the element λ̂ t,x, x = 1, . . . , c, of the vector λ̂ t =

(Π̂
t−1

)′λ̂ is an estimate of the proportion of subjects which are in latent class x at the t-th

occasion. Note that, when t = 1, this vector equals λ̂; the same occurs, regardless of t, when

the transition matrix is diagonal. Moreover, when we are dealing with a LM model based on

parametrization (5), we can estimate the average ability of the population at occasion t as ψ̂t =
∑

x ψ̂xλ̂ t,x.
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Note that from the EM algorithm we also obtain, for any x and t and any response config-

uration y observed at least once, the estimate r̂t(x|y) of the conditional probability of being in

latent class x at occasion t given y. By using these posterior estimates we can assign a subject

to a given latent class on the basis of response configuration he/she provided or, when the model

is based on a Rasch parametrization, estimate his/her ability as ψ̂t(y) =
∑

x ψ̂xr̂t(x|y).

4 Testing linear hypotheses on the transition probabilities

In this section, we deal with the asymptotic distribution of the LR statistic for testing a hypothesis

of the type

H0 : Mβ = 0m,

with M denoting a full rank matrix of dimension m× b, on the latent process parameters. Note

that we are not formulating a hypothesis directly on the transition probabilities, but on a reduced

vector of parameters on which they depend through a linear model of type (7). This gives more

flexibility to the approach. We can test, for instance, the hypothesis that the transition matrix

Π is diagonal, and therefore a LC formulation holds, against the alternative that Π is symmetric

or with all the off-diagonal elements equal to each other (see Example 4). We also recall that the

parameter space of β, B, is specified by means of inequality constraints (see Section 2.3) which,

under H0, may imply additional equality constraints on β with respect to those formulated as

Mβ = 0m. This happens, for instance, when M = 1′b. In this case, only β = 0b jointly satisfies

β > 0b and Mβ = 0m, even if M has only one row. In order to avoid these situations, and

without loss of generality, we require the dimension of the space B0 = B ∩ {β : Mβ = 0m} to

be equal to b − m. It is also convenient to reformulate more precisely the testing problem we

are dealing with as H0 : θ ∈ Θ0 against H1 : θ ∈ Θ\Θ0, where Θ is the parameter space of the

assumed model and Θ0 = A× B0 × C.
The LR statistic for testing H0 against H1 may be expressed as

D = −2[`(θ̂0)− `(θ̂)], (14)

where θ̂0 is the ML estimate of θ under the constraint Mβ = 0m and θ̂ is the unconstrained

estimate. Note that θ̂0 may be computed through the same EM algorithm illustrated in the

previous section for computing θ̂; the only difference with respect to the original formulation is

that we have to use WM⊥ instead of W as a design matrix for the linear model on the transition

probabilities, where M⊥ is a b× (b−m) full rank matrix spanning the null space of M . Now let

θ0 = (α′0,β
′
0, γ

′
0)
′ be the true value of θ under H0 and assume that TWβ0 < 1c and Kγ0 > 0k.

If we also have that β0 > 0b, θ0 is an interior point of Θ and therefore it follows from standard

14



inferential results that D has asymptotic χ2
m distribution. This occurs, for instance, when we

are testing a LM model based on a transition matrix of type (8) against the same LM model in

which this matrix is unconstrained; in this case, D has asymptotic χ2
c(c−1)−1 distribution under

the null hypothesis. In contrast, if some elements of β0 are equal to 0, θ0 is on the boundary of

Θ and therefore we are in a non-standard case. This occurs, for instance, when we are testing a

LC model against a LM model.

The asymptotic distribution of a LR test statistic when the parameters are on the boundary

of the parameter space has been studied by many authors, such as Chernoff (1954), Shapiro

(1985) and Self and Liang (1987), for instance; for a review see also Silvapulle and Sen (2004).

In our case let H(θ) = F (θ)/n be the average information matrix of the assumed LM model

and G be the block of g rows of the matrix Ib such that the vector Gβ contains the elements of

β which are constrained to 0 under H0; note that GM⊥ = 0g. Also let J be the block of the

remaining b − g rows of Ib and assume that the elements of Jβ0 are strictly positive under H0.

Thus, among all the inequality constraints involved in the specification of the parameter space,

only those formulated as Gβ > 0g are active, in the sense that only these constraints have some

chance of being violated when n grows indefinitely. Consequently, following Silvapulle and Sen

(2004, Proposition 4.8.2; see also Self and Liang, 1987, Th. 3), we find that D is asymptotically

distributed as

Q = min
θ∈L

(θ − V )′H(θ0)(θ − V )−min
θ∈P

(θ − V )′H(θ0)(θ − V ),

where L = {θ : Mβ = 0m} is a linear space nested into the polyhedral convex cone P = {θ :

Gβ > 0g} and V ∼ N(0, H(θ0)−1). It turns out that the distribution of Q, and therefore the

asymptotic distribution of D, is of chi-bar-square type, denoted by χ2, which is well-known in

constrained statistical inference (for a review see Shapiro, 1988, and Silvapulle and Sen, 2004,

Ch. 3). More precisely, we have:

Theorem 1 Provided that H(θ0) is of full rank and that H0 holds with Jβ0 > 0b−g, TWβ0 < 1c

and Kγ0 > 0k, the asymptotic distribution of the LR statistic (14) is the same as that of Z1+Z2,

where Z1 and Z2 are two independent random variables with

Z1 ∼ χ2
m−g and Z2 ∼ χ2(Σ0,Og),

where Σ0 = GH(θ0)−1G′ and Og denotes the non-negative orthant of dimension g.

Note that the distribution function of Z1 + Z2 may be expressed as

p(Z1 + Z2 6 z) =
g∑

j=0

wj(g,Σ0)p(χ2
m−g+j 6 z), (15)
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where wj(g,Σ0), j = 0, . . . , g, are suitable weights which may be computed through a simple

Monte Carlo simulation procedure, such as the one outlined in Silvapulle and Sen (2004, Sec.

3.5). By exploiting this expression, we can easily compute an asymptotic p-value for D, once we

have substituted θ0 in Σ0 with its consistent estimate θ̂0. Note also that, even though we need

to compute the weights in (15) by simulation, the resulting procedure for computing a p-value for

D is much faster than a parametric bootstrap which requires estimating the same models several

times and is therefore impractical in many real applications.

As a particular case of Theorem 1, we have that in which there are no elements of β constrained

to 0 under H0 (g = 0) and so the LR statistic D has χ2
m asymptotic distribution. Two other

interesting cases are dealt with in the following Corollary.

Corollary 1 Under the same regularity conditions as for Theorem 1, the LR statistic D for

testing a LC model based on parametrization (4) against the corresponding LM version with

unconstrained transition matrix Π has asymptotic distribution

χ2(Σ0,Oc(c−1)), (16)

with Σ0 equal to the block of H(θ0)−1 corresponding to the parameters in β. When instead the

transition matrix of the LM model is parameterized through a single parameter (b = 1), D has

asymptotic distribution

0.5χ2
0 + 0.5χ2

1. (17)

The latter case, in which the weights of the χ2 distribution are explicitly given, occurs, for

instance, when the larger model involved in the comparison is a LM model based on a transition

matrix of type (8).

4.1 A simulation study

In order to assess the accuracy of the finite sample inference based on the asymptotic results

illustrated above, we carried out a simulation study of the LR statistic between:

• (D1) an unconstrained LC model with c = 2 classes and its LM version;

• (D2) a LC Rasch model with c = 3 classes and its LM version with transition matrix

constrained as in (8);

• (D3) a LM model with c = 3 states and transition matrix of the type

Π =




1− β β 0

0 1− β β

0 0 1
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and the same model with transition matrix of the type

Π =




1− β1 β1 0

β2 1− (β2 + β3) β3

0 β4 1− β4


 ,

under the assumption that, conditionally on the latent process, the response variables have

the same distribution.

In particular, for various values of s and n and in the case of binary response variables, we

generated 2000 random samples from a set of suitably chosen LM models. For each of these

samples, we computed the value of each of the LR statistics above, together with the corresponding

p-value based on the asymptotic null distribution which is of type (16) for D1, (17) for D2 and

χ2
1 + χ2(Σ0,O2), with Σ0 suitably defined, for D3.

In a first series of these simulations, random samples were generated from the smaller model

considered within any LR statistic (e.g. the LC model with c = 2 classes for D1), with parameters

chosen as follows:

• for D1: φt,1|1 = 1/3, φt,2|1 = 2/3, ∀t, and πx = 1/2, ∀x;

• for D2: φt,1|1 = 1/4, φt,2|1 = 1/2, φt,3|1 = 3/4, ∀t, and πx = 1/3, ∀x;

• for D3: φt,1|1 = 1/4, φt,2|1 = 1/2, φt,3|1 = 3/4, ∀t, πx = 1/3, ∀x, and β = 0.1.

Thus, it was possible to compare the actual significance level of the test with the nominal level.

For nominal levels below 0.25, this comparison is shown in Figure 1 for s = 6, 12, 24 and n =

100, 200, 400 and in Figure 2 for s = 100 and n = 250, 500, 1000. In the latter case we use β = 0.02

for the model under which the null distribution of D3 has been simulated.

On the basis of the results from these simulations, we can conclude that, provided s is moderate

(Figure 1), the asymptotic null distribution of D1, D2 and D3 is a reasonable approximation of

the finite sample distribution, even when the sample size is small in comparison to the number

of possible configurations of the response variables. With s large (Figure 2), the quality of the

approximation of the asymptotic null distribution is still good for the statistic D3, but gets worse

for D1 and D2. This difference is due to the fact that the models fitted for computing D1 and

D2 have a number of parameters that increase with s, whereas this does not occur for D3. Note

however, that even though the quality of the approximation of the asymptotic distribution is

not as good for D1 and D2, the actual significance level is smaller than the nominal level and

therefore the asymptotic distribution may safely be used in this case also.
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Figure 1: Comparison between actual and nominal significance level for the tests based on the LR

statistics D1, D2 and D3 with s = 6, 12, 24 and n = 100 (dotted curve), 200 (dashed curve), 400

(solid curve).
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Figure 2: Comparison between actual and nominal significance level for the tests based on the LR

statistics D1, D2 and D3 with s = 100 and n = 250 (dotted curve), 500 (dashed curve), 1000

(solid curve).
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In order to investigate the power of the LR tests in question, we also considered the following

models:

• for D1: a LM model with c = 2 states and transition matrix of type (8) with parameters

φt,1|1 = 1/3, φt,2|1 = 2/3,∀t, πx = 1/2, ∀x, and β between 0 and 0.05 (for s = 6, 12, 24) and

between 0 and 0.0005 (for s = 100);

• for D2: a LM model with c = 3 states and transition matrix of type (8) with parameters

φt,1|1 = 1/4, φt,2|1 = 1/2, φt,3|1 = 3/4, ∀t, πx = 1/3, ∀x, and β between 0 and 0.05 (for

s = 6, 12, 24) and between 0 and 0.0005 (for s = 100);

• for D3: a LM model with c = 3 states and transition matrix

Π =




1− β1 β1 0

β2 1− β1 β1 − β2

0 β2 1− β2




with parameters φt,1|1 = 1/4, φt,2|1 = 1/2, φt,3|1 = 3/4, ∀t, πx = 1/3,∀x, and β1 = 0.1 and

β2 between 0 and 0.05 (for s = 6, 12, 24) and β1 = 0.02 and β2 between 0 and 0.0005 (for

s = 100).

The estimated rejection rate of any test at the 5% nominal level is shown in Figure 3 for s =

6, 12, 24 and in Figure 4 for s = 100. As we may expect, the power of any test increases with

the number of response variables (s) and the sample size (n). With s = 6 and n = 100, for

instance, the test based on the LR statistic D2 has a probability of about 1/4 of rejecting the null

hypothesis when β = 0.05 (Figure 3). This probability becomes equal to about 3/4 when s = 12

and is equal to 1 with s = 24. Moreover, when s = 100 (Figure 4), this test has a very large

probability of detecting also very small deviations from the null hypothesis, such as β = 0.0001.

5 Empirical illustration

To illustrate the approach proposed in this paper, we describe the analysis of two datasets, the

first of which concerns the responses of a group of students to an educational test, and the second

is concerned with the use of marijuana among young people.

5.1 Educational testing dataset

This dataset concerns a sample of n = 1510 examinees, who responded to a set of s = 12 items

on Mathematics, extrapolated from a larger dataset collected in 1996 by the Educational Testing

Service within a US project called the National Assessment of Educational Progress (NAEP); for
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Figure 3: Rejection rate of the tests based on the LR statistics D1, D2 and D3 for s = 6, 12, 24

and n = 100 (dotted curve), 200 (dashed curve), 400 (solid curve).
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Figure 4: Rejection rate of the tests based on the LR statistics D1, D2 and D3 for s = 100 and

n = 250 (dotted curve), 500 (dashed curve), 1000 (solid curve).
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a more detailed description, see Bartolucci and Forcina (2005). The interest here is in testing

for the presence of phenomena, such as those described in Example 1 of Section 2.1, which may

cause a violation of the basic assumptions of IRT models. Since the items were administered to

all the examinees in the same order, it is appropriate to use a LM model for studying phenomena

of this type. Note also that, since the contingency table on which the data may be displayed

is very sparse, a direct comparison of a LC model based on a parametrization of type (4) with

the saturated model is not as reliable as a comparison with a LM model based on the same

parametrization. Thus, the latter may be seen as a valid alternative to the saturated model in

assessing the goodness of fit of a LC model.

For this dataset we chose c = 3 latent states, which corresponds to the number of classes for

which the basic LC model has the smallest BIC (Schwarz, 1978). With this number of states, the

basic LM model has a deviance of 1899.16 with respect to the saturated model. This deviance

may be considered adequate if compared with the number of degrees of freedom, equal to 4051.

The estimated logits ηt|x’s under this model are shown in Table 1, while the estimated initial

probabilities λx’s and transition probabilities πx|w’s are shown in Table 2.

η̂t|x (LM) η̂t|x (LC)
t x = 1 x = 2 x = 3 x = 1 x = 2 x = 3
1 -0.728 1.133 2.250 -0.711 1.114 2.241
2 -1.092 1.180 2.794 -1.087 1.168 2.783
3 -0.995 0.149 1.817 -1.012 0.153 1.801
4 0.078 2.297 3.509 0.085 2.292 3.508
5 -1.346 -0.508 0.594 -1.344 -0.500 0.587
6 -0.378 0.907 2.084 -0.361 0.911 2.081
7 -0.816 0.177 1.578 -0.807 0.190 1.577
8 -2.410 -0.571 1.772 -2.303 -0.536 1.774
9 -1.533 0.431 2.844 -1.415 0.453 2.846

10 -1.440 0.384 1.854 -1.306 0.410 1.854
11 -2.804 -1.784 0.027 -2.743 -1.656 0.033
12 -3.217 -1.411 -0.248 -3.010 -1.309 -0.251

Table 1: Estimated logits ηt|x’s under the basic LM model and the corresponding LC model

π̂x|w (LM) π̂x|w (LC)
x λ̂x (LM) λ̂x (LC) w x = 1 x = 2 x = 3 x = 1 x = 2 x = 3
1 0.178 0.166 1 0.982 0.018 0.000 1.000 0.000 0.000
2 0.444 0.435 2 0.000 0.987 0.013 0.000 1.000 0.000
3 0.378 0.400 3 0.000 0.003 0.997 0.000 0.000 1.000

Table 2: Estimated initial probabilities λx’s and transition probabilities πx|w’s under the basic LM

model and the corresponding LC model
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Note that, according to the estimates in Table 1, the 1st latent class may be interpreted as

that of the less capable subjects, whereas the 3rd class may be interpreted as that of the most

capable subjects. Moreover, according to the results in Table 2, the second class contains the

largest number of subjects and there is a high persistence, i.e. the probability of transition from

one latent state to another is always very low. The largest off-diagonal element of the estimated

transition probability, π̂2|1, is in fact equal to 0.018.

In order to simplify this model, we first tried to impose an additive structure of type (5) on

the logits ηt|x’s. In this way, however, the deviance increases by 115.02 with a p-value, computed

on the basis of the χ2
22 distribution, very close to 0 and therefore this restriction must be rejected.

We then tried to impose some restrictions on the latent structure. In particular, we first tried

to impose the constraint that all the off-diagonal elements of Π are equal to each other as in

(8). The estimate of the common transition probability is β̂ = 0.001, while the LR statistic D

with respect to the initial LM model is equal to 2.24 with a p-value, computed on the basis of

the χ2
5 distribution, equal to 0.814. Consequently, this restriction cannot be rejected. Finally, we

tried to impose the restriction of absence transition between latent states. For the LC model,

resulting from this restriction, we have a LR statistic of 0.61 with respect to the LM model with

constant transition probabilities. According to Corollary 1, this statistic has null asymptotic

distribution of type (17), so that the corresponding p-value is 0.216; consequently, the LC model

cannot be rejected and therefore there is no evidence of violations of the LI assumption. A similar

conclusion may be reached by directly comparing this model with the basic LM model in which

the transition matrix is unconstrained. In this case, D = 2.86 with a p-value of 0.261 computed

on the basis of distribution (16). The estimates of the parameters of the LC model are shown in

Tables 1 and 2 together with those of the parameters of the basic LM model.

5.2 Marijuana consumption dataset

This dataset has been taken from five annual waves (1976-80) of the National Youth Survey

(Elliot et al., 1989) and is based on n = 237 respondents aged 13 years in 1976. The use of

marijuana is measured through of s = 5 ordinal variables, one for each annual wave, with d = 3

levels equal to: 1 for never in the past year; 2 for no more than once a month in the past year;

3 for more than once a month in the past year. A variety of models which may be used for the

analysis of this dataset has been illustrated by Vermunt and Hagenaars (2004). In particular, they

mention: (i) marginal models, which represent an extension of log-linear models; (ii) transitional

models, which include Markov chain models; (iii) random effect models, which include the LC

22



model. However, as mentioned by the same authors, a LM approach is desirable since it combines

many characteristics of the approaches above and may be appreciated for its flexibility and easy

interpretation. An analysis of this type is illustrated below.

Also for this dataset, we used LM models with c = 3 latent states. With this number of

states, the basic LM model has a deviance of 85.80 with 204 degrees of freedom, with respect to

the saturated model. The corresponding parameter estimates are shown in Tables 3 and 4. In

order to simplify this model, we assumed the following parametrization for the conditional global

logits of any response variable Yt given the latent state Xt = x:

ηt,y|x = ψx + δy, t = 1, . . . , s, x = 1, . . . , c, y = 1, . . . , d− 1, (18)

where ψx may be interpreted as the tendency to use marijuana for the subject in the latent class

x and the parameter δy is common to all the response variables Yt, because these variables are of

the same nature, since they are repeated measurements of the same phenomenon under the same

circumstances.

η̂t,y|x
x = 1 x = 2 x = 3

t y = 1 y = 2 y = 1 y = 2 y = 1 y = 2
1 -3.548 -5.236 -3.672 -13.816 1.128 -1.187
2 -4.066 -13.816 -0.393 -13.816 3.082 0.445
3 -13.122 -13.816 2.694 -2.650 2.752 1.805
4 -2.942 -4.092 1.025 -13.816 13.816 3.090
5 -2.018 -3.580 1.140 -13.816 13.816 4.989

Table 3: Estimated global logits ηt,y|x’s under the basic LM model

π̂x|w
x λ̂ x w x = 1 x = 2 x = 3
1 0.791 1 0.911 0.068 0.021
2 0.137 2 0.090 0.746 0.163
3 0.072 3 0.000 0.128 0.872

Table 4: Estimated initial probabilities λx’s and transition probabilities πx|w’s under the basic LM

model

The deviance of the resulting model with respect to the initial model is 23.58 with a p-

value equal to 0.600, and therefore this restriction cannot be rejected. We then tried to add some

restrictions on the latent structure. In particular, for the hypothesis π3|1 = π1|3 = 0, which implies

that the transition matrix is tridiagonal, the LR statistic with respect to the previous model is

equal to 2.02 with a p-value of 0.172, whereas this statistic is equal to 4.67 with a p-value of 0.059

for the hypothesis that the transition matrix is upper triangular. Finally, for the null hypothesis

23



of absence of transition, the LR statistic is equal to 233.73 with a p-value less than 10−4. In

the light of these results, we chose as our final model the one based on parametrization (18) and

the hypothesis that the transition matrix is tridiagonal; the latter implies that a transition from

latent state w to latent state x is possible only when x = w − 1 or x = w + 1. The parameter

estimates of this model are shown in Tables 5 and 6.

x ψ̂x y δ̂y

1 0.000 1 0.165
2 5.751 2 0.686
3 10.876

Table 5: Estimates of the parameters ψx’s and δy’s for the final LM model

π̂x|w
x ψ̂x λ̂x w x = 1 x = 2 x = 3
1 0.000 0.896 1 0.835 0.165 0.000
2 5.751 0.089 2 0.070 0.686 0.244
3 10.876 0.015 3 0.000 0.082 0.918

Table 6: Estimated initial probabilities λx’s and transition probabilities πx|w’s for the final LM

model

In Figure 5 we also show, for t = 1, . . . , s, the estimates λ̂t,x’s of the marginal probabilities

of the latent states and the estimate ψ̂t of the average tendency to use marijuana, computed

as described in Section 3.3. Finally, in Figure 5 we show, again for t = 1, . . . , s, the posterior

estimates r̂t(x|y)’s and ψ̂t(y), given the response configuration y = ( 0 0 1 2 2 ). Note that

ψ̂t(y) increases much faster in time than ψ̂t and therefore we can conclude that, for a subject

with this response configuration, the tendency to use marijuana increases much faster than the

average. At occasion t, the distance from the average could be simply measured by ψ̂t(y)− ψ̂t.

6 Conclusions

A general framework has been proposed for the formulation and testing of linear hypotheses on

the transition probabilities of a class of LM models for discrete variables having a longitudinal

structure. These hypotheses may be combined with restrictions on the conditional distribution

of the response variables given the latent process, which may be formulated as in a generalized

linear model. In order to test linear hypotheses on the transition probabilities, we recommend

the use of the LR statistic and we prove that the null asymptotic distribution of this statistic

is of chi-bar-squared type, i.e. a mixture of chi-squared distributions with weights that may be
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Figure 5: Estimated probabilities λ̂t,x’s and estimated average tendency to use marijuana ψ̂t
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Figure 6: Estimated probabilities r̂t(x|y)’s and estimated tendency to use marijuana ψ̂t(y) for a

subject with response configuration y = (0 0 1 2 2)

simply computed by simulation. This is one of the main findings of the paper. Note that we have

only dealt explicitly with the case of hypotheses on the latent process since hypotheses on the

conditional distribution of the response variables given the latent process may be tested on the

basis of standard inferential results when this distribution is parametrized as within our approach.

The proposed approach covers the case of i.i.d. observations and therefore it is directly

applicable in a contingency table setting. However, it may be easily extended to the case in

which individual covariates are present. For instance, we could parameterize the conditional

distribution of any response variable given the corresponding latent variable as in a generalized

linear model with coefficients depending on the latter. In practice, this results in a model with

occasion-specific random effects which follow a first-order Markov chain. The results concerning
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the distribution of the LR statistic for testing hypotheses on the transition matrix of the latent

process hold for these models as well, but with minor adjustments.

Another possible extension of the proposed approach is to the case of linear inequality con-

straints on the transition probabilities. Estimating a LM model under constraints of this type is

not a difficult task and may be performed by means of a modified version of the EM algorithm

illustrated in Section 3. In particular, in order to take these constraints into account, the maxi-

mization of `†2(β) during the M step of this algorithm must be performed by solving a series of

constrained least square problems similar to those solved for the maximization of `†3(γ). On the

other hand, the asymptotic distribution of the LR statistic for testing hypotheses of this type

is not in general of chi-bar squared type and may be difficult to use in practice for computing

p-values. For this reason, and since it does not seem that hypotheses of particular interest may be

expressed through inequality constraints on the transition probabilities, we explicitly considered

only the case of equality constraints.
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Appendix

A1: relation between π and ρ

We have that π = a + Aρ, where a is obtained by stacking the vectors a1, . . . ,ac one below

the other, with ax denoting a c-dimensional column vector of zeros apart from the x-th element

equal to 1, and A is a block diagonal matrix with blocks A1, . . . , Ac, where Ax = Ic,x − ax1′c−1

and Ic,x is obtained by removing the x-th column from a Ic matrix.

A2: derivative of p with respect to θ′

The derivative matrix Q(θ) has elements

p(αj)(y) =
∂p(y)
∂αj

, p(βj)(y) =
∂p(y)
∂βj

, p(γj)(y) =
∂p(y)
∂γj

,

arranged in the appropriate order, which may be computed on the basis of the same recursion

defined in Section 2 to compute p(y). Let λ(αj) denote the derivative of the vector λ with respect

to αj , Π(βj) that of Π with respect to βj and φ
(γj)
t,y that of φt,y with respect to γj . Consequently,
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p(θ)(y) = q(θ)(y6s)′1s, with θ that may correspond to αj , βj or γj , where

q(αj)(y6t) =

{
diag(φ1,y1

)λ(αj) if t = 1
diag(φt,yt

)Π′q(αj)(y6t−1) otherwise

q(βj)(y6t) =

{
0c if t = 1
diag(φt,yt

)(Π(βj))′q(y6t−1) + diag(φt,yt
)Π′q(βj)(y6t−1) otherwise

q(γj)(y6t) =

{
diag(φ(γj)

1,y1
)λ if t = 1

diag(φ(γj)
t,yt

)Π′q(y6t−1) + diag(φt,yt
)Π′q(γj)(y6t−1) otherwise

.
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