Analysis of binary panel data by static and dynamic logit models

Francesco Bartolucci University of Perugia bart@stat.unipg.it

Preliminaries

- Longitudinal (or panel) data consist of repeated observations on the some subjects at different occasions
- Data of this type are commonly used in many fields, especially in <u>economics</u> (e.g. analysis of labor market, analysis of the customer behavior) and in medicine (e.g. study of aging, efficacy of a drug)
- Many longitudinal datasets are now available:
 - National Longitudinal Surveys of Labor Market Experience (NLS)
 - Panel Study of Income Dynamics (PSID)
 - European Community Household Panel (ECHP)
 - > The Netherlands Socio-Economic Panel (SEP)
 - German Social Economic Panel (GSOEP)
 - British Household Panel Survey (BHPS)

- With respect to cross-sectional data, longitudinal data have the advantage of allowing one to study (or to take into account in a natural way):
 - unobserved heterogeneity
 - dynamic relationships
 - causal effects
- Longitudinal studies suffer from *attrition*
- We will study, in particular, models for the analysis of *binary* response variables

Basic notation

- There are *n* subjects (or individuals) in the sample, with:
 - $\succ T_i$: number of occasions at which subject *i* is observed
 - > y_{it} : response variable (binary or categorical) for subject *i* at occasion *t*
 - $> \mathbf{x}_{it}$: vector of covariates for subject *i* at occasion *t*
- The dataset is said *balanced* if all subjects are observed at the same occasions $(T_1 = \cdots = T_n)$; otherwise, it is said *unbalanced*
- Usually, the dataset is unbalanced because of *attrition*; particular care is needed in this case, especially when the non-responses are not ignorable
- For simplicity, we will usually refer to the *balanced case* and we will denote by *T* the number of occasions (common to all subjects)

Example (similar to Hyslop, 1999)

- We consider a sample of n=1908 women, aged 19 to 59 in 1980, who were followed from 1979 to 1985 (source *PSID*)
- Response variable: y_{it} equal to 1 if woman i has a job position during year t and to 0 otherwise
- Covariates: ➤ age in 1980 (time-constant)
 - \succ race (dummy equal to 1 for a black; <u>time-constant</u>)
 - educational level (number of year of schooling; <u>time-constant</u>)
 - Investigation of children aged 0 to 2 (time-varying), aged 3 to 5 (time-varying) and aged 6 to 17 (time-varying)
 - permanent income (average income of the husband from 1980 to 1985; <u>time-constant</u>)
 - temporary income (difference between income of the husband in a year and permanent income; <u>time-varying</u>)

Homogeneous static logit and probit models

• These are *simple models* for the probabilities

$$\pi(\mathbf{x}_{it}) = p(y_{it} = 1 | \mathbf{x}_{it})$$

 These probabilities are modeled so that they always belong to [0,1]; this is obtained by a *link function* of type logit or probit:

> logit:
$$\log \frac{\pi(\mathbf{x}_{it})}{1 - \pi(\mathbf{x}_{it})} = \mathbf{x}_{it}' \boldsymbol{\beta}$$

> probit:
$$\Phi^{-1}[\pi(\mathbf{x}_{it})] = \mathbf{x}_{it}'\boldsymbol{\beta}$$

> $\Phi^{-1}(\cdot)$: inverse of the distribution function of the standard normal distribution

• The *inverse link function* is:

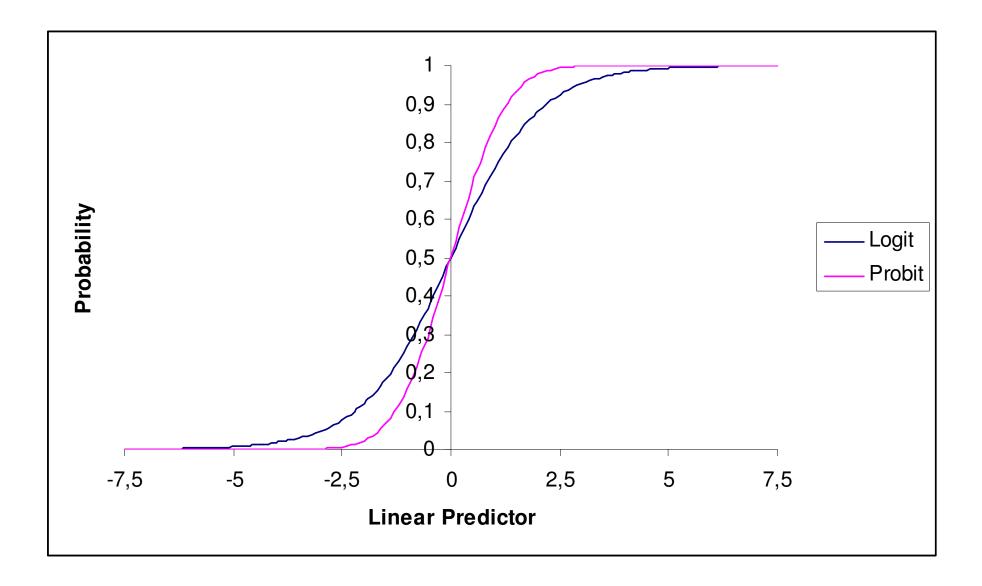
logit:
$$\pi(\mathbf{x}_{it}) = \frac{\exp(\mathbf{x}_{it}'\boldsymbol{\beta})}{1 + \exp(\mathbf{x}_{it}'\boldsymbol{\beta})}$$

probit:
$$\pi(\mathbf{x}_{it}) = \Phi(\mathbf{x}_{it} \, \boldsymbol{\beta})$$

 \blacktriangleright $\Phi(\cdot)$: distribution function of the standard normal distribution

• Other *basic assumptions* of the models:

- Independence between the response variables given the covariates (*static models*)
- The heterogeneity between subjects is only explained on the basis of observable covariates and then unobserved heterogeneity is ruled out (*homogeneous models*)



Threshold model

 Logit and probit models may be interpreted on the basis of an underlying linear model for the propensity to experience a certain situation:

$$y_{it}^* = \mathbf{x}_{it} \,' \mathbf{\beta} + \boldsymbol{\varepsilon}_{it}$$

 \succ ε_{it} : error term with standard normal or logistic distribution

• The situation is experienced $(y_{it} = 1)$ only if $y_{it}^* \ge 0$ (*threshold*), i.e.

$$y_{it} = \mathbf{1}(y_{it}^* \ge 0) = \begin{cases} 1 & \text{if } y_{it}^* \ge 0\\ 0 & \text{if } y_{it}^* < 0 \end{cases}$$

• Since the distribution of ε_{it} is symmetric, we have that $p(y_{it} = 1 | \mathbf{x}_{it}) = p(y_{it}^* \ge 0 | \mathbf{x}_{it}) = p(\mathbf{x}_{it} | \mathbf{\beta} \ge -\varepsilon_{it} | \mathbf{x}_{it}) = p(\varepsilon_{it} \le \mathbf{x}_{it} | \mathbf{\beta} | \mathbf{x}_{it})$ corresponding to the *logistic or standard normal distr. function*

Model estimation

 The most used method to fit logit and probit models is the maximum likelihood method, which is based on the maximization of the loglikelihood:

$$L(\boldsymbol{\beta}) = \sum_{i} \sum_{t} y_{it} \log[\pi(\mathbf{x}_{it})] + (1 - y_{it}) \log[1 - \pi(\mathbf{x}_{it})]$$

Maximization of L(β) can be performed by the Newton-Raphson algorithm. Starting from an initial estimate β⁽⁰⁾, the algorithm consists of updating the estimate at step h as

$$\boldsymbol{\beta}^{(h)} = \boldsymbol{\beta}^{(h-1)} + \mathbf{J} \left(\boldsymbol{\beta}^{(h-1)} \right)^{-1} \mathbf{s} \left(\boldsymbol{\beta}^{(h-1)} \right)$$

$$\mathbf{s}(\mathbf{\beta}) = \frac{\partial L(\mathbf{\beta})}{\partial \mathbf{\beta}}: \text{ score vector}$$
$$\mathbf{J}(\mathbf{\beta}) = -\frac{\partial^2 L(\mathbf{\beta})}{\partial \mathbf{\beta} \partial \mathbf{\beta}'}: \text{ observed information matrix}$$

 An alternative algorithm is the *Fisher-scoring* which uses the expected information matrix

$$\mathbf{I}(\boldsymbol{\beta}) = -E\left(\frac{\partial^2 L(\boldsymbol{\beta})}{\partial \boldsymbol{\beta} \partial \boldsymbol{\beta}'}\right)$$

instead of the observed information matrix

- Standard errors for each element of $\hat{\beta}$ is computed as the square root of the corresponding diagonal element of $I(\beta)^{-1}$
- For the *logit model* we have

$$L(\mathbf{\beta}) = \sum_{i} \sum_{t} y_{it} \mathbf{x}_{it} '\mathbf{\beta} - \log[1 + \exp(\mathbf{x}_{it} '\mathbf{\beta})]$$

$$\mathbf{s}(\mathbf{\beta}) = \sum_{i} \sum_{t} [y_{it} - \pi(\mathbf{x}_{it})]\mathbf{x}_{it},$$

$$\mathbf{J}(\mathbf{\beta}) = \mathbf{I}(\mathbf{\beta}) = \sum_{i} \sum_{t} \pi(\mathbf{x}_{it})[1 - \pi(\mathbf{x}_{it})]\mathbf{x}_{it} \mathbf{x}_{it} '\mathbf{\beta}$$

Example

• Maximum likelihood estimates for the PSID dataset (*logit model*)

Parameter	Estimate	s.e.	<i>t</i> -statistic	<i>p</i> -value
Intercept	-0.6329	0.3093	-2.0464	0.0407
Age	0.0923	0.0172	5.3750	0.0000
Age^2/100	-0.1694	0.0221	-7.6496	0.0000
Race	0.3161	0.0517	6.1188	0.0000
Education	0.3278	0.0152	21.5510	0.0000
Kids 0-2	-0.7810	0.0447	-17.4890	0.0000
Kids 3-5	-0.6450	0.0406	-15.8920	0.0000
Kids 6-17	-0.1400	0.0201	-6.9497	0.0000
Perm. inc.	-0.0215	0.0014	-15.5820	0.0000
Temp. inc.	-0.0070	0.0023	-2.9860	0.0028

• Maximum likelihood estimates for the PSID dataset (*probit model*)

Parameter	Estimate	s.e.	<i>t</i> -statistic	<i>p</i> -value
Intercept	-0.3770	0.1843	-2.0451	0.0408
Age	0.0548	0.0103	5.3308	0.0000
Age^2/100	-0.1009	0.0133	-7.5893	0.0000
Race	0.1990	0.0304	6.5362	0.0000
Education	0.1921	0.0089	21.6380	0.0000
Kids 0-2	-0.4666	0.0266	-17.5360	0.0000
Kids 3-5	-0.3871	0.0242	-15.9790	0.0000
Kids 6-17	-0.0846	0.0120	-7.0353	0.0000
Perm. inc.	-0.0115	0.0008	-14.3010	0.0000
Temp. inc.	-0.0027	0.0013	-2.0524	0.0401

• By a general rule the estimate of β under the logit model is approx. equal to 1.6 times the estimate of β under the probit model

Heterogeneous static logit and probit models

 A method to incorporate unobserved heterogeneity in a logit or probit model is to include a set of *subject-specific parameters* α_i and then assuming that

$$\pi(\alpha_i, \mathbf{x}_{it}) = \frac{\exp(\alpha_i + \mathbf{x}_{it}'\boldsymbol{\beta})}{1 + \exp(\alpha_i + \mathbf{x}_{it}'\boldsymbol{\beta})} \quad \text{or} \quad \pi(\alpha_i, \mathbf{x}_{it}) = \Phi(\alpha_i + \mathbf{x}_{it}'\boldsymbol{\beta})$$

 $\succ \pi(\alpha_i, \mathbf{x}_{it}) = p(y_{it} = 1 | \alpha_i, \mathbf{x}_{it}): \text{ conditional probability of success given} \\ \alpha_i \text{ and } \mathbf{x}_{it}$

- The parameters α_i may be treated as fixed or random:
 - \succ fixed: the response variables y_{it} are still assumed independent
 - > random: the response variables y_{it} are assumed conditionally independent given α_i

• The most used *estimation methods* of the model are:

joint maximum likelihood (fixed-parameters)

- conditional maximum likelihood (only for the logit model)
- marginal maximum likelihood (random-parameters)

Joint maximum likelihood (JML) method

It consists of maximizing the log-likelihood

 $L(\boldsymbol{\alpha}, \boldsymbol{\beta}) = \sum_{i} \sum_{t} y_{it} \log[\pi(\alpha_i, \mathbf{x}_{it})] + (1 - y_{it}) \log[1 - \pi(\alpha_i, \mathbf{x}_{it})]$

with respect to (*jointly*) $\alpha = (\alpha_1, ..., \alpha_n)'$ and β

- The method is simple to implement for both logit and probit models
- It is usually based on an iterative algorithm which alternates Newton-Raphson (or Fisher scoring) steps for updating the estimate of each α_i with Newton-Raphson (or Fisher scoring) steps for updating the estimate of β

• The JML estimator:

 \blacktriangleright does not exist (for α_i) when $y_{i+} = 0$ or $y_{i+} = T$, with $y_{i+} = \sum_t y_{it}$

- is not consistent with T fixed as n grows to infinity and so a JML estimate is not reliable for small T even if n is very large; this is because the number of parameters increases with n (*incidental parameters problem*; Neyman and Scott, 1948)
- For the heterogeneous logit model we must solve the equations:

$$\frac{\partial L(\mathbf{\beta})}{\partial \alpha_i} = \sum_t [y_{it} - \pi(\alpha_i, \mathbf{x}_{it})] = 0, \quad i = 1, \dots, n$$
$$\frac{\partial L(\mathbf{\beta})}{\partial \mathbf{\beta}} = \sum_i \sum_t [y_{it} - \pi(\alpha_i, \mathbf{x}_{it})] \mathbf{x}_{it} = \mathbf{0}$$

Conditional maximum likelihood (CML) method

- This estimation method may be used only for the *logit model*
- For the logit model we have that, for i = 1, ..., n, y_{i+} is a *sufficient statistic* for the subject specific-parameter α_i and, consequently, we can construct a conditional likelihood which does not depend on these parameters but only on β
- The *conditional log-likelihood* may be expressed as

$$L_c(\boldsymbol{\beta}) = \sum_i \log[p(\mathbf{y}_i | \mathbf{X}_i, y_{i+})], \quad \mathbf{y}_i = (y_{i1}, \dots, y_{iT})'$$

• From the maximization of $L_c(\beta)$ we obtain the *CML estimator* of β , $\hat{\beta}_c$, which is consistent for fixed *T* as *n* grows to infinity; this maximization may be performed on the basis of a *Newton-Raphson* algorithm which also produces standard errors for $\hat{\beta}_c$

- An important *drawback*, common to all fixed-parameters approaches, is that the regression parameters for the time-constant covariates are not estimable
- The *probability of the response configuration* y_i may be expressed as

$$p(\mathbf{y}_i | \mathbf{X}_i) = \prod_t \frac{\exp[y_{it}(\alpha_i + \mathbf{x}_{it}'\boldsymbol{\beta})]}{1 + \exp(\alpha_i + \mathbf{x}_{it}'\boldsymbol{\beta})} = \frac{\exp(y_{i+}\alpha_i + \sum_t y_{it}\mathbf{x}_{it}'\boldsymbol{\beta})}{\prod_t [1 + \exp(\alpha_i + \mathbf{x}_{it}'\boldsymbol{\beta})]}$$

• The probability of the sum of the responses y_{i+} is then equal to

$$p(y_{i+} | \mathbf{X}_i) = \frac{\exp(y_{i+}\alpha_i)}{\prod_t [1 + \exp(\alpha_i + \mathbf{x}_{it} | \boldsymbol{\beta})]} \sum_{\mathbf{z}(y_{i+})} \exp(\sum_t z_t \mathbf{x}_{it} | \boldsymbol{\beta})$$

> $\sum_{\mathbf{z}(y_{i+})}$ is extended to all the response configurations $\mathbf{z} = (z_1, \dots, z_T)'$ with sum $z_+ = y_{i+}$ The conditional probability of the response configuration y_i given y_{i+} is then

$$p(\mathbf{y}_i | \mathbf{X}_i, y_{i+}) = \frac{\exp(\sum_t y_{it} \mathbf{x}_{it} | \mathbf{\beta})}{\sum_{\mathbf{z}(y_{i+})} \exp(\sum_t z_t \mathbf{x}_{it} | \mathbf{\beta})}$$

which is equal to 1 for $y_{i+} = 0$ or $y_{i+} = T$ regardless of the value of β

- The *conditional log-likelihood* is equal to $L_{c}(\boldsymbol{\beta}) = \sum_{i} 1(0 < y_{i+} < T) \{ \sum_{t} y_{it} \mathbf{x}_{it} | \boldsymbol{\beta} - \log[\sum_{\mathbf{z}(y_{i+})} \exp(\sum_{t} z_{t} \mathbf{x}_{it} | \boldsymbol{\beta})] \}$
- Score and observed information matrix, to be used within the Newton-Raphson algorithm and to compute the standard errors for $\hat{\beta}_c$:

$$\mathbf{s}_{c}(\mathbf{\beta}) = \frac{\partial L_{c}(\mathbf{\beta})}{\partial \mathbf{\beta}} = \sum_{i} 1(0 < y_{i+} < T) \mathbf{X}_{i} \left[\mathbf{y}_{i} - \mathbf{E}_{\mathbf{\beta}}(\mathbf{y}_{i} | y_{i+}) \right]$$
$$\mathbf{J}_{c}(\mathbf{\beta}) = -\frac{\partial L_{c}^{2}(\mathbf{\beta})}{\partial \mathbf{\beta} \partial \mathbf{\beta}'} = \sum_{i} 1(0 < y_{i+} < T) \mathbf{X}_{i} \mathbf{V}_{\mathbf{\beta}}(\mathbf{y}_{i} | y_{i+}) \mathbf{X}_{i}$$

• JML and CML estimates for the PSID dataset (*logit model*)

Parameter	JML estimate	CML estimate	s.e.	t- statistic	<i>p</i> - value
Intercept	-	-	-	-	-
Age	-	-	-	-	-
Age^2/100	-	-	-	-	-
Race	-	-	-	-	-
Education	-	-	-	-	-
Kids 0-2	-1.3660	-1.1537	0.0899	-12.8290	0.0000
Kids 3-5	-0.9912	-0.8373	0.0840	-9.9638	0.0000
Kids 6-17	-0.2096	-0.1764	0.0637	-2.7691	0.0056
Perm. inc.	-	-	-	-	-
Temp. inc.	-0.0162	-0.0136	0.0033	-4.1186	0.0000

(-) not estimable

Marginal maximum likelihood (MML)

- This estimation method may be used for both *logit and probit models*
- It is based on the assumption that the subject-specific parameters α_i are random parameters with the same distribution f(α_i) which is independent of X_i
- It is also assumed that the response variables y_{i1}, \dots, y_{iT} are *conditionally independent* given α_i , so that

$$p(\mathbf{y}_i | \mathbf{X}_i) = \int p(\mathbf{y}_i | \alpha_i, \mathbf{X}_i) f(\alpha_i) d\alpha_i, \quad p(\mathbf{y}_i | \alpha_i, \mathbf{X}_i) = \prod_t p(y_{it} | \alpha_i, \mathbf{X}_{it}),$$

where the integral must usually be computed by a numerical method (e.g. quadrature)

• The *marginal log-likelihood* is then

$$L_m(\mathbf{\beta}) = \sum_i \log[p(\mathbf{y}_i \mid \mathbf{X}_i)],$$

which can be maximized, with respect to β and (possibly) the parameters of the distribution of the random effects, by a Newton-Raphson algorithm

Logit model with normal random effects

• Under the assumption $\alpha_i \sim N(\mu, \sigma^2)$, for the *logit model* we have $p(\mathbf{y}_i | \mathbf{X}_i) = \int p(\mathbf{y}_i | w, \mathbf{X}_i) \phi(w) dw$

$$\succ p(\mathbf{y}_i \mid w, \mathbf{X}_i) = \prod_t \frac{\exp[y_{it}(\mu + w\sigma + \mathbf{x}_{it} \mid \boldsymbol{\beta})]}{1 + \exp(\mu + w\sigma + \mathbf{x}_{it} \mid \boldsymbol{\beta})} = \prod_t \frac{\exp\{y_{it}[\mathbf{z}_{it}(w) \mid \boldsymbol{\gamma}]\}}{1 + \exp[\mathbf{z}_{it}(w) \mid \boldsymbol{\gamma}]}$$

 $\ge \phi(w) :$ density function of the standard normal distribution

$$\succ \mathbf{z}_{it}(w) = (1 \quad w \quad \mathbf{x}_{it}')', \quad \gamma = (\mu \quad \sigma \quad \beta')'$$

• The score vector and the (empirical) information matrix are given by

$$\mathbf{s}_{m}(\mathbf{\gamma}) = \frac{\partial L_{m}(\mathbf{\gamma})}{\partial \mathbf{\gamma}} = \sum_{i} \mathbf{s}_{m,i}(\mathbf{\gamma}), \quad \mathbf{s}_{m,i}(\mathbf{\gamma}) = \frac{1}{p(\mathbf{y}_{i} | \mathbf{X}_{i})} \int \frac{\partial p(\mathbf{y}_{i} | w, \mathbf{X}_{i})}{\partial \mathbf{\gamma}} \phi(w) dw$$
$$\widetilde{\mathbf{J}}_{m}(\mathbf{\gamma}) = \sum_{i} \mathbf{s}_{m,i}(\mathbf{\gamma}) \mathbf{s}_{m,i}(\mathbf{\gamma})' - \frac{1}{n} \mathbf{s}_{m}(\mathbf{\gamma}) \mathbf{s}_{m}(\mathbf{\gamma})'$$

Pros and cons of MML

- The MML method is more complicate to implement than fixed-effects methods (JML, CML), but it allows us to estimate the regression parameters for *both time-fixed and time-varying covariates*
- The MML also allows us to *predict future outcomes*
- Special care has to be used for the specification of the distribution of the random effects. It may be restrictive to assume:
 - a specific parametric function for these effects, such as the normal distribution
 - \succ that the distribution does not depend on the covariates

- The approach may be extended to overcome these drawbacks:
 - a discrete distribution with free support points and mass probabilities may be used for the random effects; the approach is in this case of *latent class* type and requires the implementation of an EM algorithm (Dempster *et al.*, 1977) and the choice of the number of support points
 - The parameters of the distribution of the random effects are allowed to depend on the covariates; one possibility is the *correlated effect model* of Chamberlain (1984)

JML, CML and MML-normal estimates for the PSID dataset (*logit model*); MML algorithm uses 51 quadrature points from –5 to 5

Parameter	JML estimate	CML estimate	MML estimate	s.e.	t- statistic	<i>p</i> -value
Intercept	-	-	-2.9448	1.3461	-2.1876	0.0287
Std.dev (σ)			3.2196	0.1066	30.2090	0.0000
Age	-	-	0.2652	0.0712	3.7243	0.0002
Age^2/100	-	-	-0.4285	0.0906	-4.7271	0.0000
Race	-	-	0.6800	0.2162	3.1449	0.0017
Education	-	-	0.6737	0.0643	10.4810	0.0000
Kids 0-2	-1.3660	-1.1537	-1.3418	0.0773	-17.3490	0.0000
Kids 3-5	-0.9912	-0.8373	-1.0260	0.0635	-16.1680	0.0000
Kids 6-17	-0.2096	-0.1764	-0.2533	0.0438	-5.7775	0.0000
Perm. inc.	-	-	-0.0427	0.0036	-11.9610	0.0000
Temp. inc.	-0.0162	-0.0136	-0.0110	0.0023	-4.7554	0.0000

Summary of the models fit

• Estimates for the PSID dataset (*logit model*):

Method	Log- likelihood pa	n. arameters	AIC	BIC
Homogenous	-7507.3	10	15034.6	15090.1
Heterogeneous-JML	-2986.3	1912	9796.6	20415.5
Heterogeneous-CML*	-2128.5	4	4265.0	4287.2
Heterogeneous-MML- normal	-5264.4	11	10550.8	10611.9

(*) not directly comparable with the others

• AIC: *Akaike Information Criterion* (Akaike, 1973)

AIC = -2(max.log-likelihood) + 2(n. parameters)

• BIC: *Bayesian Information Criterion* (Schwarz, 1978)

BIC = $-2(\max \log - 1) + \log(n)(n \max)$

Dynamic models

- Previous models are *static*: they do not include the lagged response variable among the regressors
- The *dynamic* version of these models is based on the assumption that, given $y_{i,t-1}$ and α_i , every y_{it} is conditionally independent of $y_{i1}, \ldots, y_{i,t-2}$ and that

$$\pi(\alpha_i, \mathbf{x}_{it}, y_{i,t-1}) = \frac{\exp(\alpha_i + \mathbf{x}_{it}'\mathbf{\beta} + y_{i,t-1}\mathbf{\gamma})}{1 + \exp(\alpha_i + \mathbf{x}_{it}'\mathbf{\beta} + y_{i,t-1}\mathbf{\gamma})}$$

or

$$\pi(\alpha_i, \mathbf{x}_{it}, y_{i,t-1}) = \Phi(\alpha_i + \mathbf{x}_{it}' \boldsymbol{\beta} + y_{i,t-1} \boldsymbol{\gamma})$$

 $\succ \pi(\alpha_i, \mathbf{x}_{it}, y_{i,t-1}) = p(y_{it} = 1 | \alpha_i, \mathbf{x}_{it}, y_{i,t-1}): \text{ conditional probability of success}$

- The initial observation y_{i0} must be known. When the parameters α_i are random, the *initial condition problem* arises. The simplest approach, which however can lead to an biased estimator of β and γ, is to treat y_{i0} as an exogenous covariate
- Dynamic models have the great advantage of allowing us to distinguish between:
 - true state dependence (Heckman, 1981): effect that experimenting a certain situation in the present has on the propensity of experimenting the same situation in the future
 - > spurious state dependence: propensity common to all occasions which is measured by α_i and the time-constant covariates

Estimation of dynamic models

- The subject-specific parameters α_i may be considered as *fixed* or *random*
- With *fixed parameters* α_i, the conditional probability of a response configuration y_i given y_{i0} is:

$$p(\mathbf{y}_i \mid \boldsymbol{\alpha}_i, \mathbf{X}_i, y_{i0}) = \prod_t p(y_{it} \mid \boldsymbol{\alpha}_i, \mathbf{x}_{it}, y_{i,t-1})$$

• The *random-parameters* approach requires to formulate a distribution for the parameters α_i , so that

$$p(\mathbf{y}_i | \mathbf{X}_i, y_{i0}) = \int p(\mathbf{y}_i | \boldsymbol{\alpha}_i, \mathbf{X}_i, y_{i0}) f(\boldsymbol{\alpha}_i) d\boldsymbol{\alpha}_i,$$
$$p(\mathbf{y}_i | \boldsymbol{\alpha}_i, \mathbf{X}_i, y_{i0}) = \prod_t p(y_{it} | \boldsymbol{\alpha}_i, \mathbf{X}_{it}, y_{i,t-1})$$

- The most used *estimation methods* for dynamic models are the same as for static models:
 - joint maximum likelihood (fixed-parameters)
 - conditional maximum likelihood (only for the logit model)
 - >marginal maximum likelihood (random-parameters)

Joint maximum likelihood (JML) method

• The *log-likelihood* has again a simple form:

 $L(\boldsymbol{\alpha}, \boldsymbol{\beta}, \boldsymbol{\gamma}) = \sum_{i} \sum_{t} y_{it} \log[\pi(\boldsymbol{\alpha}_{i}, \mathbf{x}_{it}, y_{i,t-1})] + (1 - y_{it}) \log[1 - \pi(\boldsymbol{\alpha}_{i}, \mathbf{x}_{it}, y_{i,t-1})]$

and must be jointly maximized with respect to α , β and γ

- Maximizing the *log-likelihood* may be performed by using a Newton-Raphson (or Fisher scoring) algorithm which alternates a step in which the estimate of each parameter α_i is updated with a step in which the estimates of β and γ are updated
- The algorithm is essentially the same as that used for static models, but with y_{i,t-1} included among the covariates x_{it}
- The JML estimator has the same drawbacks it has for static models: it *does not exist* (for α_i) when $y_{i+} = 0$ or $y_{i+} = T$, with $y_{i+} = \sum_t y_{it}$

> it is *not consistent* with *T* fixed as *n* grows to infinity

• JML estimates for the PSID dataset (*static and dynamic logit models*)

Parameter	Static logit	Dynamic logit
Kids 0-2	-1.3660	-1.2688
Kids 3-5	-0.9912	-0.8227
Kids 6-17	-0.2096	-0.1730
Temp. inc.	-0.0162	-0.0112
Lagged response	_	0.5696

 A positive state dependence is observed and the *fit of the logit model* improves considerably by including the lagged response variable

Model	Log- likelihood p	n. arameters	AIC	BIC
Static logit	-2986.3	1912	9796.6	20415.5
Dynamic logit	-2317.9	1913	8461.8	19086.2

Conditional maximum likelihood (CML) method

- The CML method may be used to estimate the dynamic logit model only in particular circumstances
- Under these circumstances, the method is difficult to implement since the sum of the response variables y_{i+} is not a *sufficient statistic* for the subject specific-parameter α_i
- The CML approach may be used when T = 3 and there are no covariates, so that

$$p(\mathbf{y}_{i} \mid \alpha_{i}, y_{i0}) = \frac{\exp(y_{i+}\alpha_{i} + y_{i*}\gamma)}{\prod_{t} [1 + \exp(y_{it}\alpha_{i} + y_{i,t-1}\gamma)]}, \quad y_{i*} = \sum_{t} y_{i,t-1}y_{it}$$

• The response configurations $\mathbf{y}_i = (0 \ 1 \ y_{i3})'$ and $\mathbf{y}_i = (1 \ 0 \ y_{i3})'$ have *conditional probability*

$$p[(0 \ 1 \ y_{i3})' | \alpha_i, y_{i0}] = \frac{\exp[(1 + y_{i3})\alpha_i + y_{i3}\gamma]}{[1 + \exp(\alpha_i + y_{i0}\gamma)][1 + \exp(\alpha_i)][1 + \exp(\alpha_i + \gamma)]}$$
$$p[(1 \ 0 \ y_{i3})' | \alpha_i, y_{i0}] = \frac{\exp[(1 + y_{i3})\alpha_i + y_{i0}\gamma]}{[1 + \exp(\alpha_i + y_{i0}\gamma)][1 + \exp(\alpha_i + \gamma)][1 + \exp(\gamma)]}$$

• We can then condition on y_{i0} , $y_{i1} + y_{i2} = 1$, y_{i3} obtaining the *conditional probabilities*

$$p[(0 \ 1 \ y_{i3}) | \alpha_i, y_{i0}, y_{i1} + y_{i2} = 1, y_{i3}] = \frac{\exp(y_{i3}\gamma)}{\exp(y_{i3}\gamma) + \exp(y_{i0}\gamma)} = \frac{1}{1 + \exp[(y_{i0} - y_{i3})\gamma]}$$

 $p[(1 \quad 0 \quad y_{i3}) \mid \alpha_i, y_{i0}, y_{i1} + y_{i2} = 1, y_{i3}] = \frac{\exp(y_{i0}\gamma)}{\exp(y_{i3}\gamma) + \exp(y_{i0}\gamma)} = \frac{\exp[(y_{i0} - y_{i3})\gamma]}{1 + \exp[(y_{i0} - y_{i3})\gamma]}$

• The corresponding *conditional log-likelihood* is

$$L_{c}(\gamma) = \sum_{i} d_{i} (y_{i1}(y_{i0} - y_{i3})\gamma - \log\{1 + \exp[(y_{i0} - y_{i3})\gamma]\})$$
$$d_{i} = 1(y_{i1} + y_{i2} = 1),$$

which may be maximized by a simple Newton-Raphson algorithm; it results a consistent estimator of γ (Chamberlain, 1993)

 The conditional approach may also be implemented for T > 3 on the basis of the *pairwise conditional log-likelihood*

$$L_{pc}(\gamma) = \sum_{i} \sum_{s < t < T} 1(y_{is} + y_{it} = 1)(y_{is}(y_{i,s-1} - y_{i,t+1})\gamma - \log\{1 + \exp[(y_{i,s-1} - y_{i,t+1})\gamma]\})$$

the resulting estimator has the same properties it has for T = 3 and, in particular, it is consistent for *T* fixed as *n* grows to infinity

- The conditional approach may also be used in the presence of covariates, provided that:
 - The probability that each *discrete covariate* is time-constant is positive (this rules out the possibility of time dummies)
 - The support of the distribution of the continuous covariates satisfies suitable conditions
- The *algorithm* to be implemented in this case is rather complicate and leads to a consistent estimator of β and γ which, however, is not \sqrt{n} -consistent (Honoré and Kyriazidou, 2000)
- The CML approach has the advantage, over the MML approach, of not requiring to formulate the *distribution of the subject-specific parameters*. It also does not suffer from the *initial condition problem* and y_{i0} may be treated as an exogenous covariate

Marginal maximum likelihood (MML) method

- This estimation method may be used for both *dynamic logit and probit* models
- The algorithm is essentially the same as that for static models, but we have to use an *extended vector of covariates* which includes the lagged response variable
- For the dynamic logit model with normal random effects we have to maximize

$$L_m(\widetilde{\boldsymbol{\gamma}}) = \sum_i p(\mathbf{y}_i | \mathbf{X}_i, y_{i0}), \quad p(\mathbf{y}_i | \mathbf{X}_i, y_{i0}) = \int p(\mathbf{y}_i | w, \mathbf{X}_i, y_{i0}) \phi(w) dw,$$

$$\succ p(\mathbf{y}_i \mid w, \mathbf{X}_i, y_{i0}) = \prod_t \frac{\exp[y_{it}(\mu + w\sigma + \mathbf{x}_{it}'\boldsymbol{\beta} + y_{i,t-1}\gamma)]}{1 + \exp(\mu + w\sigma + \mathbf{x}_{it}'\boldsymbol{\beta} + y_{i,t-1}\gamma)}$$

MML-normal estimates for the PSID dataset (*static and dynamic logit models*)

Parameter	Static Iogit	Dynamic logit	s.e.	t- statistic	<i>p</i> - value
Intercept	-2.9448	-2.3313	0.6609	-3.5275	0.0004
Std.dev (σ)	3.2196	1.1352	0.0930	12.2060	0.0000
Age	0.2652	0.1037	0.0360	2.8820	0.0040
Age^2/100	-0.4285	-0.1813	0.0464	-3.9096	0.0001
Race	0.6800	0.3011	0.1054	2.8573	0.0043
Education	0.6737	0.3034	0.0332	9.1456	0.0000
Kids 0-2	-1.3418	-0.8832	0.0825	-10.7010	0.0000
Kids 3-5	-1.0260	-0.4390	0.0736	-5.9629	0.0000
Kids 6-17	-0.2533	-0.0819	0.0393	-2.0831	0.0372
Perm. inc.	-0.0427	-0.0189	0.0019	-10.1030	0.0000
Temp. inc.	-0.0110	-0.0036	0.0030	-1.1783	0.2387
Lagged response	-	2.7974	0.0653	42.8420	0.0000

- For the above example, a much *stronger state dependence effect* is observed with the MML method with respect to the JML method $(\hat{\gamma} = 2.7974 \text{ vs. } \hat{\gamma} = 0.5696)$
- The suspect is that with the MML method the parameter γ is overestimated and this is because the assumptions on the distribution of the parameters α_i are *restrictive*
- A simple way to *give more flexibility* to the approach is to allow the mean of the normal distribution assumed on the parameters α_i to depend (through a linear regression model) on the initial observation y_{i0} and the corresponding time-varying covariates x_{i0}

MML-normal estimates for the PSID dataset (*dynamic and extended dynamic logit models*)

Parameter	Dynamic logit	Exteded dynamic logit	s.e.	t- statistic	<i>p</i> - value
Intercept	-2.3313	-3.4484	0.8942	-3.8566	0.0001
Std.dev (σ)	1.1352	1.6473	0.0900	18.2930	0.0000
Age	0.1037	0.1103	0.0502	2.1970	0.0280
Age^2/100	-0.1813	-0.1902	0.0647	-2.9410	0.0033
Race	0.3011	0.2744	0.1374	1.9971	0.0458
Education	0.3034	0.2864	0.0419	6.8412	0.0000
Kids 0-2	-0.8832	-1.0498	0.0917	-11.4470	0.0000
Kids 3-5	-0.4390	-0.5865	0.0871	-6.7369	0.0000
Kids 6-17	-0.0819	-0.1213	0.0624	-1.9426	0.0521
Perm. inc.	-0.0189	-0.0164	0.0031	-5.3094	0.0000
Temp. inc.	-0.0036	-0.0049	0.0032	-1.5133	0.1302
Lagged response	2.7974	1.8165	0.0824	22.0550	0.0000

- The estimate for the state dependence effect seems now more reliable $(\hat{\gamma} = 1.8164 \text{ vs. } \hat{\gamma} = 2.7974)$ even if it is strongly positive
- Estimates of the parameters for the mean of the distribution for α_i

Parameter	Estimate	s.e.	t-statistic	<i>p</i> -value
Kids 0-2	0.2669	0.1284	2.0787	0.0376
Kids 3-5	0.2424	0.1221	1.9864	0.0470
Kids 6-17	0.1299	0.0680	1.9102	0.0561
Temp. inc.	0.0116	0.0058	2.0180	0.0436
Initial observation (y_{i0})	2.5915	0.1586	16.3450	0.0000

Model	Log- likelihood pa	n. rameters	AIC	BIC
JML	-2317.9	1913	8461.8	19086.2
MML	-4188.1	12	8400.2	8466.8
MML extended	-3976.2	17	7986.4	8080.8

References

- Akaike, H. (1973), Information theory and an extension of the maximum likelihood principle, *Second International symposium on information theory*, Petrov, B. N. and Csaki F. (eds), pp. 267-281.
- Bartolucci, F. (2006), Likelihood inference for a class of latent Markov models under linear hypotheses on the transition probabilities, *Journal of the Royal Statistical Society, series B*, **68**, pp. 155-178.
- Chamberlain, G. (1984), Panel data, in *Handbook of Econometrics, vol. 2*, Z. Griliches and M.D. Intriligator (eds.), Elsevier Science, Amsterdam, pp. 1247-1318.
- Chamberlain, G. (1993), Feedback in Panel Data Models, Mimeo, Department of Economics, Harvad University.
- Dempster A. P., Laird, N. M. and Rubin, D. B. (1977), Maximum likelihood from incomplete data via the EM Algorithm (with discussion), *Journal of the Royal Statistical Society, Series B*, **39**, pp. 1-38.
- Elliot, D. S., Huizinga, D. and Menard, S. (1989), *Multiple Problem Youth: Delinquency, Substance Use, and Mental Health Problems*, Springer-Verlag, New York.
- Frees, E. W. (2004), *Longitudinal and Panel Data: Analysis and Applications in the Social Sciences*, Cambridge University Press.

- Heckman, J. J. (1981a), Heterogeneity and state dependence, in *Structural Analysis of Discrete Data*, McFadden D. L. and Manski C. A, Cambridge, MA, MIT Press, pp. 91-139.
- Heckman, J. J. (1981b), The incidental parameter problem and the problem of initial conditions in estimating a discrete time-discrete data stochastic process, in *Structural Analysis of Discrete Data with Econometric Applications*, C.F. Manski and D. McFadden (eds.), MIT Press, Cambridge, USA, 179-195.

Hsiao, C. (2005), Analysis of Panel Data, 2nd edition, Cambridge University Press.

- Honoré, B. E. and Kyriazidou, E. (2000), Panel data discrete choice models with lagged dependent variables, *Econometrica*, **68**, pp. 839-874.
- Hyslop, D. R. (1999), State dependence, serial correlation and heterogeneity in intertemporal labor force participation of married women, *Econometrica*, **67**, pp. 1255-1294.
- Manski, C.F. (1975), Maximum score estimation of the stochastic utility model of choice, *Journal of Econometrics*, **3**, pp. 205-228.
- Neyman, J. and Scott, E. (1948), Consistent estimates based on partially consistent observations, *Econometrica*, **16**, pp. 1-32
- Schwarz, G. (1978), Estimating the dimension of a model, *Annals of Statistics*, **6**, pp. 461-464.