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Preliminaries 

• Longitudinal (or panel) data consist of repeated observations on the 
some subjects at different occasions 

• Data of this type are commonly used in many fields, especially in 
economics (e.g. analysis of labor market, analysis of the customer 
behavior) and in medicine (e.g. study of aging, efficacy of a drug) 

• Many longitudinal datasets are now available: 

� National Longitudinal Surveys of Labor Market Experience (NLS) 

� Panel Study of Income Dynamics (PSID) 

� European Community Household Panel (ECHP) 

� The Netherlands Socio-Economic Panel (SEP) 

� German Social Economic Panel (GSOEP) 

� British Household Panel Survey (BHPS) 
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• With respect to cross-sectional data, longitudinal data have the 
advantage of allowing one to study (or to take into account in a natural 
way): 

� unobserved heterogeneity 

� dynamic relationships 

� causal effects 

• Longitudinal studies suffer from attrition 

• We will study, in particular, models for the analysis of binary response 
variables 
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Basic notation 

• There are n subjects (or individuals) in the sample, with: 

� iT : number of occasions at which subject i  is observed 

� ity : response variable (binary or categorical) for subject i  at 

occasion t  

� itx : vector of covariates for subject i  at occasion t  

• The dataset is said balanced if all subjects are observed at the same 
occasions ( nTT ==L1 ); otherwise, it is said unbalanced 

• Usually, the dataset is unbalanced because of attrition; particular care 
is needed in this case, especially when the non-responses are not 
ignorable 

• For simplicity, we will usually refer to the balanced case and we will 
denote by T  the number of occasions (common to all subjects) 
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Example (similar to Hyslop, 1999) 

• We consider a sample of 1908=n  women, aged 19 to 59 in 1980, who 
were followed from 1979 to 1985 (source PSID) 

• Response variable: ity  equal to 1 if woman i  has a job position during 

year t  and to 0 otherwise 

• Covariates:   � age in 1980 (time-constant) 

� race (dummy equal to 1 for a black; time-constant) 

� educational level (number of year of schooling; time-constant) 

� number of children aged 0 to 2 (time-varying), aged 3 to 5 (time-
varying) and aged 6 to 17 (time-varying) 

� permanent income (average income of the husband from 1980 to 
1985; time-constant) 

� temporary income (difference between income of the husband in a 
year and permanent income; time-varying) 
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Homogeneous static logit and probit models 

• These are simple models for the probabilities 

)|1()( ititit yp xx ==π  

• These probabilities are modeled so that they always belong to [0,1]; 

this is obtained by a link function of type logit or probit: 

� logit:        βx
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� probit:      βxx ')]([1
itit =Φ− π  

� )(1 ⋅Φ− : inverse of the distribution function of the standard 

normal distribution 
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• The inverse link function is: 

� logit:        
)'exp(1

)'exp(
)(

βx

βx
x

it

it
it

+
=π  

� probit:      )'()( βxx itit Φ=π  

� )(⋅Φ : distribution function of the standard normal distribution 

• Other basic assumptions of the models: 

� Independence between the response variables given the 

covariates (static models) 

� The heterogeneity between subjects is only explained on the 

basis of observable covariates and then unobserved 

heterogeneity is ruled out (homogeneous models) 
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Threshold model 

• Logit and probit models may be interpreted on the basis of an 
underlying linear model for the propensity to experience a certain 
situation: 

ititity ε+= βx '*
 

� itε : error term with standard normal or logistic distribution 

• The situation is experienced ( 1=ity ) only if 0* ≥ity  (threshold), i.e. 
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• Since the distribution of itε  is symmetric, we have that 

)|'()|'()|0()|1( *
itititititititititit ppypyp xβxxβxxx ≤=−≥=≥== εε  

corresponding to the logistic or standard normal distr. function 
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Model estimation 

• The most used method to fit logit and probit models is the maximum 
likelihood method, which is based on the maximization of the log-
likelihood:  

∑∑ −−+=
i t

itititit yyL )](1log[)1()](log[)( xxβ ππ  

• Maximization of )(βL  can be performed by the Newton-Raphson 

algorithm. Starting from an initial estimate )0(
β , the algorithm consists 

of updating the estimate at step h as 

( ) ( ))1(1)1()1()( −−−− += hhhh βsβJββ  
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• An alternative algorithm is the Fisher-scoring which uses the 
expected information matrix  
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instead of the observed information matrix 

• Standard errors for each element of β̂ is computed as the square root 

of the corresponding diagonal element of 1)( −
βI  

• For the logit model we have 
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Example 

• Maximum likelihood estimates for the PSID dataset (logit model) 

Parameter Estimate s.e. t-statistic p-value 

Intercept -0.6329 0.3093 -2.0464 0.0407 

Age 0.0923 0.0172 5.3750 0.0000 

Age^2/100 -0.1694 0.0221 -7.6496 0.0000 

Race 0.3161 0.0517 6.1188 0.0000 

Education 0.3278 0.0152 21.5510 0.0000 

Kids 0-2 -0.7810 0.0447 -17.4890 0.0000 

Kids 3-5 -0.6450 0.0406 -15.8920 0.0000 

Kids 6-17 -0.1400 0.0201 -6.9497 0.0000 

Perm. inc. -0.0215 0.0014 -15.5820 0.0000 

Temp. inc. -0.0070 0.0023 -2.9860 0.0028 
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• Maximum likelihood estimates for the PSID dataset (probit model) 

Parameter Estimate s.e. t-statistic p-value 

Intercept -0.3770 0.1843 -2.0451 0.0408 

Age 0.0548 0.0103 5.3308 0.0000 

Age^2/100 -0.1009 0.0133 -7.5893 0.0000 

Race 0.1990 0.0304 6.5362 0.0000 

Education 0.1921 0.0089 21.6380 0.0000 

Kids 0-2 -0.4666 0.0266 -17.5360 0.0000 

Kids 3-5 -0.3871 0.0242 -15.9790 0.0000 

Kids 6-17 -0.0846 0.0120 -7.0353 0.0000 

Perm. inc. -0.0115 0.0008 -14.3010 0.0000 

Temp. inc. -0.0027 0.0013 -2.0524 0.0401 

• By a general rule the estimate of β under the logit model is approx. 

equal to 1.6 times the estimate of β under the probit model 
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Heterogeneous static logit and probit models 

• A method to incorporate unobserved heterogeneity in a logit or probit 
model is to include a set of subject-specific parameters iα  and then 

assuming that 
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� ),|1(),( itiititi yp xx ααπ == : conditional probability of success given 

iα  and itx  

• The parameters iα  may be treated as fixed or random: 

� fixed: the response variables ity  are still assumed independent 

� random: the response variables ity  are assumed conditionally 

independent given iα  
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• The most used estimation methods of the model are: 

� joint maximum likelihood (fixed-parameters) 

� conditional maximum likelihood (only for the logit model) 

� marginal maximum likelihood (random-parameters) 
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Joint maximum likelihood (JML) method 

• It consists of maximizing the log-likelihood 

∑∑ −−+=
i t

itiititiit yyL )],(1log[)1()],(log[),( xxβα απαπ  

with respect to (jointly) )',,( 1 nαα K=α  and β 

• The method is simple to implement for both logit and probit models 

• It is usually based on an iterative algorithm which alternates Newton-

Raphson (or Fisher scoring) steps for updating the estimate of each iα  

with Newton-Raphson (or Fisher scoring) steps for updating the 

estimate of β 
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• The JML estimator: 

� does not exist (for iα ) when 0=+iy  or Tyi =+ , with ∑=+ t iti yy  

� is not consistent with T  fixed as n grows to infinity and so a JML 

estimate is not reliable for small T  even if n is very large; this is 

because the number of parameters increases with n (incidental 

parameters problem; Neyman and Scott, 1948) 

• For the heterogeneous logit model we must solve the equations: 
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Conditional maximum likelihood (CML) method 

• This estimation method may be used only for the logit model 

• For the logit model we have that, for ni ,,1 K= , +iy  is a sufficient 

statistic for the subject specific-parameter iα  and, consequently, we 

can construct a conditional likelihood which does not depend on these 
parameters but only on β 

• The conditional log-likelihood may be expressed as 

∑ +=
i

iiic ypL )],|(log[)( Xyβ ,     )',,( 1 iTii yy K=y  

• From the maximization of )(βcL  we obtain the CML estimator of β, cβ̂ , 

which is consistent for fixed T  as n grows to infinity; this maximization 
may be performed on the basis of a Newton-Raphson algorithm which 

also produces standard errors for cβ̂  
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• An important drawback, common to all fixed-parameters approaches, 
is that the regression parameters for the time-constant covariates are 
not estimable 

• The probability of the response configuration iy  may be expressed as 
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• The probability of the sum of the responses +iy  is then equal to 
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is extended to all the response configurations 

)',,( 1 Tzz K=z  with sum ++ = iyz  
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•  The conditional probability of the response configuration iy  given +iy  

is then 

∑ ∑
∑

+

=+
)(

)'exp(

)'exp(
),|(

iy t itt

t itit
iii

z

y
yp

z
βx

βx
Xy  

which is equal to 1 for 0=+iy  or Tyi =+  regardless of the value of β 

• The conditional log-likelihood is equal to 
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• Score and observed information matrix, to be used within the Newton-

Raphson algorithm and to compute the standard errors for cβ̂ : 
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• JML and CML estimates for the PSID dataset (logit model) 

Parameter 
JML 

estimate 
CML 

estimate 
s.e. 

t-
statistic 

p-
value 

Intercept - - - - - 

Age - - - - - 

Age^2/100 - - - - - 

Race - - - - - 

Education - - - - - 

Kids 0-2 -1.3660 -1.1537 0.0899 -12.8290 0.0000 

Kids 3-5 -0.9912 -0.8373 0.0840 -9.9638 0.0000 

Kids 6-17 -0.2096 -0.1764 0.0637 -2.7691 0.0056 

Perm. inc. - - - - - 

Temp. inc. -0.0162 -0.0136 0.0033 -4.1186 0.0000 

(-) not estimable 
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Marginal maximum likelihood (MML) 

• This estimation method may be used for both logit and probit models 

• It is based on the assumption that the subject-specific parameters iα  

are random parameters with the same distribution )( if α  which is 

independent of iX  

• It is also assumed that the response variables iTi yy ,,1 K  are 

conditionally independent given iα , so that 

∫= iiiiiii dfpp ααα )(),|()|( XyXy ,     ∏=
t

itiitiii ypp ),|(),|( xXy αα , 

where the integral must usually be computed by a numerical method 

(e.g. quadrature) 
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• The marginal log-likelihood is then 

∑=
i

iim pL )]|(log[)( Xyβ , 

which can be maximized, with respect to β and (possibly) the 

parameters of the distribution of the random effects, by a Newton-

Raphson algorithm 
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Logit model with normal random effects 

• Under the assumption iα ∼ ),( 2σµN , for the logit model we have 

∫= dwwwpp iiii )(),|()|( φXyXy  
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� )(wφ : density function of the standard normal distribution 

� )''1()( itit ww xz = ,     )''( βγ σµ=  

• The score vector and the (empirical) information matrix are given by 
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Pros and cons of MML 

• The MML method is more complicate to implement than fixed-effects 

methods (JML, CML), but it allows us to estimate the regression 

parameters for both time-fixed and time-varying covariates 

• The MML also allows us to predict future outcomes 

• Special care has to be used for the specification of the distribution of 

the random effects. It may be restrictive to assume: 

� a specific parametric function for these effects, such as the normal 

distribution 

� that the distribution does not depend on the covariates 
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• The approach may be extended to overcome these drawbacks: 

� a discrete distribution with free support points and mass probabilities 

may be used for the random effects; the approach is in this case of 

latent class type and requires the implementation of an EM algorithm 

(Dempster et al., 1977) and the choice of the number of support 

points 

� the parameters of the distribution of the random effects are allowed 

to depend on the covariates; one possibility is the correlated effect 

model of Chamberlain (1984) 
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• JML, CML and MML-normal estimates for the PSID dataset (logit 
model); MML algorithm uses 51 quadrature points from –5 to 5 

Parameter 
JML 

estimate 
CML 

estimate 
MML 

estimate 
s.e. 

t-
statistic 

p-value 

Intercept - - -2.9448 1.3461 -2.1876 0.0287 

Std.dev 
(σ ) 

  3.2196 0.1066 30.2090 0.0000 

Age - - 0.2652 0.0712 3.7243 0.0002 

Age^2/100 - - -0.4285 0.0906 -4.7271 0.0000 

Race - - 0.6800 0.2162 3.1449 0.0017 

Education - - 0.6737 0.0643 10.4810 0.0000 

Kids 0-2 -1.3660 -1.1537 -1.3418 0.0773 -17.3490 0.0000 

Kids 3-5 -0.9912 -0.8373 -1.0260 0.0635 -16.1680 0.0000 

Kids 6-17 -0.2096 -0.1764 -0.2533 0.0438 -5.7775 0.0000 

Perm. inc. - - -0.0427 0.0036 -11.9610 0.0000 

Temp. inc. -0.0162 -0.0136 -0.0110 0.0023 -4.7554 0.0000 
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Summary of the models fit 

• Estimates for the PSID dataset (logit model): 

Method 
Log-

likelihood 
n. 

parameters 
AIC BIC 

Homogenous -7507.3 10 15034.6 15090.1 

Heterogeneous-JML -2986.3 1912 9796.6 20415.5 

Heterogeneous-CML* -2128.5 4 4265.0 4287.2 

Heterogeneous-MML-
normal 

-5264.4 11 10550.8 10611.9 

(*) not directly comparable with the others 

• AIC: Akaike Information Criterion (Akaike, 1973) 

)parametersn.(2)likelihoodlog.(max2AIC +−−=  

• BIC: Bayesian Information Criterion (Schwarz, 1978) 

)parametersn.)(log()likelihoodlog.(max2BIC n+−−=  
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Dynamic models 

• Previous models are static: they do not include the lagged response 
variable among the regressors 

• The dynamic version of these models is based on the assumption that, 
given 1, −tiy  and iα , every ity  is conditionally independent of 

2,1 ,, −tii yy K  and that 
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� ),,|1(),,( 1,1, −− == tiitiittiiti yypy xx ααπ : conditional probability of 

success 
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• The initial observation 0iy  must be known. When the parameters iα  

are random, the initial condition problem arises. The simplest 

approach, which however can lead to an biased estimator of β and γ , 

is to treat 0iy  as an exogenous covariate 

• Dynamic models have the great advantage of allowing us to 

distinguish between: 

� true state dependence (Heckman, 1981): effect that experimenting a 

certain situation in the present has on the propensity of 

experimenting the same situation in the future 

� spurious state dependence: propensity common to all occasions 

which is measured by iα  and the time-constant covariates 
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Estimation of dynamic models 

• The subject-specific parameters iα  may be considered as fixed or 

random 

• With fixed parameters iα , the conditional probability of a response 

configuration iy  given 0iy  is: 

∏ −=
t

tiitiitiiii yypyp ),,|(),,|( 1,0 xXy αα  

• The random-parameters approach requires to formulate a distribution 
for the parameters iα , so that 

iiiiiiiii dfypyp ααα )(),,|(),|( 00 ∫= XyXy , 

∏ −=
t

tiitiitiiii yypyp ),,|(),,|( 1,0 xXy αα  
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• The most used estimation methods for dynamic models are the same 

as for static models: 

� joint maximum likelihood (fixed-parameters) 

� conditional maximum likelihood (only for the logit model) 

� marginal maximum likelihood (random-parameters) 



 33

Joint maximum likelihood (JML) method 

• The log-likelihood has again a simple form: 

∑∑ −− −−+=
i t

tiitiittiitiit yyyyL )],,(1log[)1()],,(log[),,( 1,1, xxβα απαπγ  

and must be jointly maximized with respect to α, β and γ  

• Maximizing the log-likelihood may be performed by using a Newton-
Raphson (or Fisher scoring) algorithm which alternates a step in 
which the estimate of each parameter iα  is updated with a step in 

which the estimates of β and γ  are updated 

• The algorithm is essentially the same as that used for static models, 
but with 1, −tiy  included among the covariates itx  

• The JML estimator has the same drawbacks it has for static models: 

� it does not exist (for iα ) when 0=+iy  or Tyi =+ , with ∑=+ t iti yy  

� it is not consistent with T  fixed as n grows to infinity 
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• JML estimates for the PSID dataset (static and dynamic logit models) 

Parameter Static logit Dynamic logit 

Kids 0-2 -1.3660 -1.2688 

Kids 3-5 -0.9912 -0.8227 

Kids 6-17 -0.2096 -0.1730 

Temp. inc. -0.0162 -0.0112 

Lagged response - 0.5696 

• A positive state dependence is observed and the fit of the logit model 
improves considerably by including the lagged response variable 

Model 
Log-

likelihood 
n. 

parameters 
AIC BIC 

Static logit -2986.3 1912 9796.6 20415.5 

Dynamic logit -2317.9 1913 8461.8 19086.2 
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Conditional maximum likelihood (CML) method 

• The CML method may be used to estimate the dynamic logit model 

only in particular circumstances 

• Under these circumstances, the method is difficult to implement since 

the sum of the response variables +iy  is not a sufficient statistic for the 

subject specific-parameter iα  

• The CML approach may be used when 3=T  and there are no 

covariates, so that 
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• The response configurations )'10( 3ii y=y  and )'01( 3ii y=y  have 

conditional probability 
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• The corresponding conditional log-likelihood is 

∑ −+−−=
i

iiiiiic yyyyydL ]}))exp[(1log{)(()( 30301 γγγ  

)1(1 21 =+= iii yyd , 

which may be maximized by a simple Newton-Raphson algorithm; it 

results a consistent estimator of γ  (Chamberlain, 1993) 

• The conditional approach may also be implemented for 3>T  on the 

basis of the pairwise conditional log-likelihood 
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<<

+−+− −+−−=+=
i Tts

tisitisiisitispc yyyyyyyL ]}))exp[(1log{)()(1(1)( 1,1,1,1, γγγ  

the resulting estimator has the same properties it has for 3=T  and, in 

particular, it is consistent for T  fixed as n grows to infinity 
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• The conditional approach may also be used in the presence of 

covariates, provided that: 

� the probability that each discrete covariate is time-constant is 

positive (this rules out the possibility of time dummies) 

� the support of the distribution of the continuous covariates satisfies 

suitable conditions 

• The algorithm to be implemented in this case is rather complicate and 

leads to a consistent estimator of β and γ  which, however, is not n -

consistent (Honoré and Kyriazidou, 2000) 

• The CML approach has the advantage, over the MML approach, of not 

requiring to formulate the distribution of the subject-specific 

parameters. It also does not suffer from the initial condition problem 

and 0iy  may be treated as an exogenous covariate 
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Marginal maximum likelihood (MML) method 

• This estimation method may be used for both dynamic logit and probit 
models 

• The algorithm is essentially the same as that for static models, but we 
have to use an extended vector of covariates which includes the 
lagged response variable 

• For the dynamic logit model with normal random effects we have to 
maximize  
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• MML-normal estimates for the PSID dataset (static and dynamic logit 
models) 

Parameter 
Static 
logit 

Dynamic 
logit 

s.e. 
t-

statistic 
p-

value 

Intercept -2.9448 -2.3313 0.6609 -3.5275 0.0004 

Std.dev (σ ) 3.2196 1.1352 0.0930 12.2060 0.0000 

Age 0.2652 0.1037 0.0360 2.8820 0.0040 

Age^2/100 -0.4285 -0.1813 0.0464 -3.9096 0.0001 

Race 0.6800 0.3011 0.1054 2.8573 0.0043 

Education 0.6737 0.3034 0.0332 9.1456 0.0000 

Kids 0-2 -1.3418 -0.8832 0.0825 -10.7010 0.0000 

Kids 3-5 -1.0260 -0.4390 0.0736 -5.9629 0.0000 

Kids 6-17 -0.2533 -0.0819 0.0393 -2.0831 0.0372 

Perm. inc. -0.0427 -0.0189 0.0019 -10.1030 0.0000 

Temp. inc. -0.0110 -0.0036 0.0030 -1.1783 0.2387 

Lagged 
response 

- 2.7974 0.0653 42.8420 0.0000 
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• For the above example, a much stronger state dependence effect is 

observed with the MML method with respect to the JML method 

( 7974.2ˆ =γ  vs. 5696.0ˆ =γ ) 

• The suspect is that with the MML method the parameter γ  is 

overestimated and this is because the assumptions on the distribution 

of the parameters iα  are restrictive 

• A simple way to give more flexibility to the approach is to allow the 

mean of the normal distribution assumed on the parameters iα  to 

depend (through a linear regression model) on the initial observation 

0iy  and the corresponding time-varying covariates 0ix  
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• MML-normal estimates for the PSID dataset (dynamic and extended 
dynamic logit models) 

Parameter 
Dynamic 

logit 
Exteded dynamic 

logit 
s.e. 

t-
statistic 

p-
value 

Intercept -2.3313 -3.4484 0.8942 -3.8566 0.0001 

Std.dev (σ ) 1.1352 1.6473 0.0900 18.2930 0.0000 

Age 0.1037 0.1103 0.0502 2.1970 0.0280 

Age^2/100 -0.1813 -0.1902 0.0647 -2.9410 0.0033 

Race 0.3011 0.2744 0.1374 1.9971 0.0458 

Education 0.3034 0.2864 0.0419 6.8412 0.0000 

Kids 0-2 -0.8832 -1.0498 0.0917 -11.4470 0.0000 

Kids 3-5 -0.4390 -0.5865 0.0871 -6.7369 0.0000 

Kids 6-17 -0.0819 -0.1213 0.0624 -1.9426 0.0521 

Perm. inc. -0.0189 -0.0164 0.0031 -5.3094 0.0000 

Temp. inc. -0.0036 -0.0049 0.0032 -1.5133 0.1302 

Lagged 
response 

2.7974 1.8165 0.0824 22.0550 0.0000 
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• The estimate for the state dependence effect seems now more reliable 
( 8164.1ˆ =γ  vs. 7974.2ˆ =γ ) even if it is strongly positive 

• Estimates of the parameters for the mean of the distribution for iα  

Parameter Estimate s.e. t-statistic p-value 

Kids 0-2 0.2669 0.1284 2.0787 0.0376 

Kids 3-5 0.2424 0.1221 1.9864 0.0470 

Kids 6-17 0.1299 0.0680 1.9102 0.0561 

Temp. inc. 0.0116 0.0058 2.0180 0.0436 

Initial observation ( 0iy ) 2.5915 0.1586 16.3450 0.0000 

 

Model 
Log-

likelihood 
n. 

parameters 
AIC BIC 

JML -2317.9 1913 8461.8 19086.2 

MML -4188.1 12 8400.2 8466.8 

MML extended -3976.2 17 7986.4 8080.8 
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