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Università di Perugia, Italy



Definition

• Let

X = ( X1, . . . , XJ )
′ ∈ X

be a random vector of binary variables and p(X) denote

its joint probability distribution.

• If, for any pair of vectors x1 and x2 ∈ X ,

p[min(x1,x2)]p[max(x1,x2)] ≥ p(x1)p(x2)

then the random vector X is Multivariate Totally Posi-

tive (MTP2).

•MTP2 defines a stochastic ordering amounting to a strong

form of positive dependence since implies Association (A)

and Strongly Positive Orthant Dependence (SPOD) (e.

g. Holland and Rosenbaum, 1986).



• J = 2,

X2 = 0 X2 = 1

X1 = 0 p(00) p(01)

X1 = 1 p(10) p(11)

ρ(X1, X2) = log
p(00)p(11)

p(01)p(10)
≥ 0

• J = 3,

X3 = 0 X3 = 1

X2 = 0 X2 = 1 X2 = 0 X2 = 1

X1 = 0 p(000) p(010) p(001) p(011)

X1 = 1 p(100) p(110) p(101) p(111)

ρ(X1, X2|X3 = 0) ≥ 0 ρ(X1, X2|X3 = 1) ≥ 0

ρ(X1, X3|X2 = 0) ≥ 0 ρ(X1, X3|X2 = 1) ≥ 0

ρ(X2, X3|X1 = 0) ≥ 0 ρ(X2, X3|X1 = 1) ≥ 0



• Let P = {j1, j2} be any pair of indices belonging to

J = {1, 2, . . . , J} and U ⊆ P̄ .

• ρ(P ,U) be the log-odds ratio in the 2×2 subtable corre-

sponding to the conditional distribution of (Xj1, Xj2) given

Xj = 1,∀j ∈ U and Xj = 0,∀j 6∈ P ∪ U .

• J = 3, P = {1, 2}, U = ∅,

ρ(P ,U) = ρ(X1, X2|X3 = 0).

• J = 4, P = {2, 3}, U = {1},

ρ(P ,U) = ρ(X2, X3|X1 = 1, X4 = 0).



• In general (for any J), MTP2 holds if and only if (Karlin

and Rinott, 1980) for any P ⊂ J and any U ⊆ P̄

ρ(P ,U) ≥ 0.

• In the whole we have a condition that concerns
J

2

 2J−2

log-odds ratios.



• We propose a procedure to test if MTP2 holds for a

certain data set.

• This condition is relevant in many fields: statistical

mechanics, computer storage, Item Response Theory

(IRT) models. IRT models are latent variable models used

for the analysis of the results of a test assigned to a group

of subjects. Xj is the response of an examinee to the jth

item of the test:

− Xj = 1 the response is correct

− Xj = 0 otherwise

• These models are usually based on the non-parametric

assumptions of Local independence (LI) and Unidimen-

sionality (U) and Monotonicity (M).

• LI, U and M imply MTP2: violation of MTP2 for a

data set implies that no IRT model for the data set may

exist.



• The procedure to test MTP2 is based on the likelihood

ratio statistic between a saturated log-linear model and

the same model whose parameters are constrained to take

into account MTP2.

• The saturated model log-linear model is defined as

log(p) = Zβ

where

− p is the vector of all the joint probabilities apart from

the first that is redundant;

− Z is an invertible matrix obtained by deleting the first

row and the first column from

E ⊗ · · · ⊗ E︸ ︷︷ ︸
J times

, with E =


1 0

1 1

 .

− β is the parameter vector.



•The vector of all the conditional log-odds ratios (ρ(P ,U))

may be obtained as

ρ = Rβ

where R is an appropriate matrix that may be obtained

trough a series of Kronecker products between matrices E

and vectors e
′
= ( 0 1 ).

• Since MTP2 holds if and only if ρ ≥ 0, MTP2 is also

equivalent to the requirement that the β belongs to the

convex cone

C = {β : Rβ ≥ 0}.



Maximum Likelihood Estimation

• Under the multinomial sampling scheme, let y denote

the vector of the observed frequencies apart from the first

(y(0)) which is redundant.

• To estimate β under MTP2 we have to maximize the

log-likelihood

L(β;y) = y
′
log(p)+(n−1

′
y) log[1−1

′
log(p)]+constant

under the constraint β ∈ C.



• To maximize L(β;y) under β ∈ C, an iterative algo-

rithm based on reweighted least squared is proposed.

• At step any step the operation

max
β∈C

Q(β, β0),

where β0 is the estimate at previous step, is performed.

Q(β, β0) is the second order Taylor expansion of L in β0.

• The starting value is given by the unrestricted estimate

Z−1 log[y/y(0)].

• This algorithm converges to the maximum of the L under

β ∈ C (concavity of L).



Hypothesis testing

• H0 hypothesis of independence (Rβ = 0).

• HP hypothesis that MTP2 holds (β ∈ C).

• HU hypothesis that β is unrestricted.

• Let Lh(y) be the maximum likelihood obtained under

the hypothesis h (h = 0, P, U).

• To test H0 versus HP/H0 and HP versus HU/HP a

decomposition of the G2 statistic for testing independence

is used:

G2 = 2[LU(y)− L0(y)] = TPU + T0P

where:

− T0P = 2[LP (y)−L0(y)] is a measure of the discrepancy

against H0 in the direction of HP ;

− TPU = 2[LU(y)−LP (y)] is a measure of the discrepancy

against HP in the direction of HU .



Asymptotic distribution of T0P and TPU

• Under H0, when n increases while J remains constant

TPU converges in distribution to

QC̄ ∼ χ̄2(C̄,Σ)

and T0P converges in distribution to

QC ∼ χ̄2(C,Σ)

where Σ is the asymptotic variance of β̂ (unconstrained

estimator of β).

• In general for a cone S and a covariance matrix V,

χ̄2(S,V) is the distribution of

QS = v̂
′
V−1v̂

where v̂ is the orthogonal projection of v ∼ N(0, V ) in

the V−1 metric. v̂ solves the problem

min
v̂∈S

(v − v̂)
′
V−1(v − v̂).



• χ̄2(S,V) is a mixture of χ2 distributions with appropri-

ate weights which depend on S and V.

• In practice, once compute the value of TPU to test for

MTP2 it is possible to compute a local p-value as

lim
n→∞P (TPU > tPU) =

t∑
0

wj(C̄, Σ̂0)Pr(χ2
j > tPU)

where:

− t = sJ − J − 1;

− Σ̂0 is the estimate of Σ under H0;

− weights are estimated, with the required precision, by a

Monte Carlo Simulation.

• This p-value depends on the local estimate of Σ.



• It has been proven that for any c > 0,

P (χ̄2(Ot) ≥ c) ≤ lim
n→∞Pr(TPU ≥ c)

≤ P (χ2
t−u + χ̄2(Ou) ≥ c),

where

− u = J(J − 1)/2;

− Ot and Ou are the positive orthants in Rt and Ru,

respectively;

− the covariance matrix in the χ̄2 distributions is the iden-

tity matrix.

• It is possible to compute an interval for the p-value which

does not depend on the local estimate.

• The weights of the extreme distribution may be com-

puted without simulation since correspond to probabilities

of appropriate binomial distributions.



An Application

• We analyzed a data set concerning the responses of n =

150 students to a test made-up of J = 4 items used within

an assessment for a basic course in Statistics at Perugia

University.

y
′
= ( 0 1 1 4 24 0 3 0 0 4 10 0 3 10 90 ) .

• The value of TPU equals 12.0603: the p-value is bounded

between 0.0599 and 0.1564 with a local estimate equal to

0.1114.

• MTP2 cannot be rejected and we cannot state that IRT

models are not adequate to analyze these data.
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