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Definition

o [et
X=(X,....X;) ex

be a random vector of binary variables and p(X) denote

its joint probability distribution.

e [f for any pair of vectors x; and xy € X,

plmin(xy, x2)|plmax(x1, X2)] = p(x1)p(x2)

then the random vector X is Multivariate Totally Posi-
tive (MTP;).

e MTP, defines a stochastic ordering amounting to a strong

form of positive dependence since implies Association (A)
and Strongly Positive Orthant Dependence (SPOD) (e.
g. Holland and Rosenbaum, 1986).



p(00)p(11)
X1, X9) =1 > ()
p(X1, Xo) o8 L O1)p(10) >
o J =23,

X3=0 X3=1
Xo=0 Xo=1|Xo=0 Xo=1
X1 =0/ p(000) p(010) | p(001) p(011)
X1 =1 p(100) p(110)  p(101) p(111)
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e Let P = {j1,j2} be any pair of indices belonging to
J=1{1,2,....,J}and U C P.

e p(P,U) be the log-odds ratio in the 2 x 2 subtable corre-
sponding to the conditional distribution of (X, X;,) given
X;,=1VjelUand X; =0,Vj &€ PUU.

o J=3P={12}, U=0,

p(P,U) = p(X;, X5| X5 =0).

o J =4 P={2,3}, U ={1},

p(P,Z/I) = p(XQ,Xg‘Xl = 1,X4 = O)



e [n general (for any J), MT P, holds if and only if (Karlin
and Rinott, 1980) for any P C J and any U C P

p(P,U) > 0.

e [n the whole we have a condition that concerns

e

log-odds ratios.



e We propose a procedure to test if MTPy holds for a

certain data set.

e This condition is relevant in many fields: statistical
mechanics, computer storage, Item Response Theory
(IRT) models. IRT models are latent variable models used
for the analysis of the results of a test assigned to a group
of subjects. X is the response of an examinee to the jth
item of the test:

— X, = 1 the response is correct

— X, = 0 otherwise

e These models are usually based on the non-parametric
assumptions of Local independence (LI) and Unidimen-

stonality (U) and Monotonicity (M).

e LI, U and M imply MT'P,: violation of MT'P, for a
data set implies that no IRT model for the data set may

exist.



e The procedure to test MTP5 is based on the likelihood
ratio statistic between a saturated log-linear model and
the same model whose parameters are constrained to take

into account MTP».

e The saturated model log-linear model is defined as

log(p) = Z3

where

— p is the vector of all the joint probabilities apart from
the first that is redundant;

— 7 is an invertible matrix obtained by deleting the first

row and the first column from

1 0
E® - ®E,WithE( )
J times 11

— (3 is the parameter vector.



e The vector of all the conditional log-odds ratios (p(P,U))

may be obtained as
p=RpG
where R is an appropriate matrix that may be obtained

trough a series of Kronecker products between matrices E

and vectors e = (0 1).

e Since MTPs holds if and only if p > 0, MTP5 is also
equivalent to the requirement that the 3 belongs to the

convex cone

C={B8:RB >0}



Maximum Likelihood Estimation

e Under the multinomial sampling scheme, let y denote

the vector of the observed frequencies apart from the first

(y(0)) which is redundant.

e To estimate B under MTPy we have to maximize the

log-likelihood

L(B:y) =y log(p)+(n—1"y)log[1—1 log(p)]+constant

under the constraint 3 € C.



e To maximize L(B;y) under 3 € C, an iterative algo-

rithm based on reweighted least squared is proposed.

e At step any step the operation

max Q(3, Bo),

BeC
where 3, is the estimate at previous step, is performed.

Q (8, B,) is the second order Taylor expansion of L in 3.

e The starting value is given by the unrestricted estimate

Z ' logly /y(0)].

e This algorithm converges to the maximum of the L under

B € C (concavity of L).



Hypothesis testing

e Hj hypothesis of independence (R3 = 0).
e Hp hypothesis that MTP, holds (8 € C).
e Hy hypothesis that 3 is unrestricted.

e Let Ly(y) be the maximum likelihood obtained under
the hypothesis h (h =0, P,U).

e To test Hy versus Hp/Hy and Hp versus Hy/Hp a
decomposition of the G statistic for testing independence

1s used:
G* = 2[Ly(y) — Lo(y)] = Tpy + Top

where:

— Top = 2[Lp(y)— Lo(y)] is a measure of the discrepancy
against H in the direction of Hp;

— Tpy = 2|Ly(y)—Lp(y)] is ameasure of the discrepancy

against Hp in the direction of Hy;.



Asymptotic distribution of 7,p and 1py

e Under Hy, when n increases while J remains constant

T'pyr converges in distribution to

QC’ ~ )_(2<C_Z,Z>

and Typ converges in distribution to

QC ~ )ZQ(C72>

where 3 is the asymptotic variance of 3 (unconstrained

estimator of 3).

e In general for a cone & and a covariance matrix V,

Y2(S, V) is the distribution of
Qs=vV'¥y

where v is the orthogonal projection of v.~ N(0,V) in

the V! metric. v solves the problem

: ooVl &
{/Déél(V V)V (v —vV).



¢ ¥*(S,V) is a mixture of x? distributions with appropri-
ate weights which depend on S and V.

e In practice, once compute the value of T’p;; to test for

MTPs it is possible to compute a local p-value as
. t PR <
lim P(Tpy > tpy) = %ij(C, EO)PT(X? > tpy)
where:
—t=s'—J—1;
— 3 is the estimate of ¥ under Hy;

— weights are estimated, with the required precision, by a

Monte Carlo Simulation.

e This p-value depends on the local estimate of 3.



e [t has been proven that for any ¢ > 0,
P(x*(O1) > ¢) < lim Pr(Tpy > ¢

< PO, + 0, 2 ),

where

—u=JJ—-1)/2

— O, and O, are the positive orthants in R’ and RY,
respectively:

— the covariance matrix in the y? distributions is the iden-

tity matrix.

e [t is possible to compute an interval for the p-value which

does not depend on the local estimate.

e The weights of the extreme distribution may be com-
puted without simulation since correspond to probabilities

of appropriate binomial distributions.



An Application

e We analyzed a data set concerning the responses of n =
150 students to a test made-up of J = 4 items used within
an assessment for a basic course in Statistics at Perugia

University.

y=(0 11424030041 03 10 9).

e The value of T’p;; equals 12.0603: the p-value is bounded
between 0.0599 and 0.1564 with a local estimate equal to
0.1114.

e MTP5 cannot be rejected and we cannot state that IRT

models are not adequate to analyze these data.
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