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Introduction

Starting point

Let X1,X2, . . . ,Xn be a random sample from a continuous distribution F(x)
with density f (x)

Let µ be the mean or the median of f (.)

Problem of testing symmetry:

H0 : F(µ− x) = 1− F(µ+ x) ∀x

against (hypothesis of skewness)

H1 : F(µ− x) 6= 1− F(µ+ x) for at least one x

Aim: to propose a test of symmetry based on Normal finite mixture (NM)
models (Lindsay, 1996; McLachlan and Peel, 2000)
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Introduction

Why testing symmetry?

many parametric statistical methods are robust to the violation of the
normality assumption of f (x), being the symmetry often sufficient for their
validity

knowledge about the symmetry of f (x) is relevant to choose which
location parameter is more representative of the distribution, being mean,
median, and mode not coincident in case of skewness

in case-control studies the exchangeability is required for the joint
distribution of observations of treated and controlled individuals: as
exchangeability implies the symmetry of the distribution, knowing that a
distribution is skewed allows to exclude its exchangeability

nonparametric methods assume the symmetry of the distribution rather
than its normality
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Introduction

How testing symmetry?

Traditional test based on the third sample standardised moment (Gupta,
1967)

b1 =
m3

m3/2
2

,

where mr = 1/n
∑n

i=1(xi − x)r, r = 2, 3
b1 is commonly used to estimate the third standardised population moment

γ1 =
µ3

µ
3/2
2

, µr = E[(X − µ)r]

for samples from a symmetric distribution with finite sixth order central
moment,

b1 → N (0, σ2), σ2 =
µ6 − 6µ2µ4 + 9µ3

2

nµ3
2

σ2 is consistently estimated by substituting µj, j = 2, 4, 6, with the appropriate
sample moments
under H0,

S1 =
n1/2b1

σ̂
→ N (0, 1)
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Introduction

Drawbacks of Gupta’s test

γ1 is sensitive to outliers
γ1 can be undefined for heavy-tailed distributions (e.g., Chauchy)
γ1 = 0 not necessarily means that f (x) is symmetric

Other tests based on alternative measures of skewness

Randles et al. (1980) for a triples test
McWilliams (1990), Modarres and Gastwirth (1996) for a runs test
Cabilio and Masaro (1996), Miao et al. (2006) for a test based on the Yule’s
skewness index
Mira (1999) for a test based on the Bonferroni’s index

Non-parametric tests based on the kernel estimation method

Fan and Gencay (1995), Ngatchou-Wandji (2006), Racine and Maasoumi
(2007)
pros: a better goodness of fit is allowed with respect to parametric methods
cons: high number of unknown parameters
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Introduction

Our proposal

We know that:

NM densities (with common variance) allow to approximate arbitrarily well
any continuous (symmetric or skewed) distribution

NM densities provide a convenient semi-parametric framework in which
to model unknown distributions, by keeping

a parsimony close to that of full parametric methods as represented by a
single density
the flexibility of nonparametric methods as represented by the kernel method

Therefore, we propose the use of NM densities for testing symmetry about an
unknown value
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The mixture-based test of symmetry The NM model

The NM model

Density of a mixture of k normal components (NMk)

f (x) =

k∑
j=1

πjφ(x; νj, σ
2),

πj (j = 1, . . . , k) denotes the weight of the j-th component
νj = α+ βδj (j = 1, . . . , k) denotes the support points of the mixture
α is the centre of symmetry
β is a scale parameter
δ1, . . . , δk is a grid of equispaced points between −1 and 1
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The mixture-based test of symmetry Maximum likelihood estimation

Maximum likelihood estimation

Log-likelihood of NMk

`(θ) =

n∑
i=1

log
k∑

j=1

πjφ(xi; νj, σ
2)

θ = (α, β, π1, . . . , πk)

`(θ) is maximised through an EM algorithm (Dempster et al., 1977)

complete data log-likelihood

`c(θ) =

n∑
i=1

k∑
j=1

zij logφ(xi; νj, σ
2) +

∑
j

z·j logπj

zij is a dummy variable equal to 1 if the i-th observation belongs to the j-th
component and to 0 otherwise
z·j =

∑
i zij
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The mixture-based test of symmetry Maximum likelihood estimation

EM algorithm

Step E: compute the expected value of zij, i = 1, . . . , n and j = 1, . . . , k,
given the observed data x = (x1, . . . , xn) and the current value of the
parameters θ

ẑij =
φ(xi; νj, σ

2)πj∑
h φ(xi; νh, σ2)πh

Step M: maximise `c(θ) with any zij substituted by ẑij. The solution is
reached when:

β =

∑
i

∑
j zij(xi − x̄)δj∑

j z·j(δj − δ̄)δj
; x̄ =

∑
i

xi/n; δ̄ =
∑

j

z·jδj/k

α = x̄− βδ̄
σ2 =

∑
i

∑
j

zij[xi − (α+ βδj)]
2/n

π̂j =
ẑ·j
n

j = 1, . . . , k
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The mixture-based test of symmetry Maximum likelihood estimation

Selection of k

A crucial point with NM models concerns the choice of the number k of
mixture components

coherently with the main literature we suggest to use AIC and BIC indices

note that AIC tends to overestimate the true number of components

we select k as an odd number

in this way there is one mixture component, the [(k + 1)/2]-th, which
corresponds to the centre of the distribution and its mean directly
corresponds to the parameter α
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The mixture-based test of symmetry Proposed test of symmetry

Proposed test of symmetry

in a symmetric density the components specular with respect to the
centre of symmetry are represented in equal proportions, whereas in a
skewed density they are mixed in different proportions

therefore, if the sample observations come from a symmetric distribution,
then the weights of mixture components equidistant from the centre of
symmetry are equal, being different otherwise

the hypothesis of symmetry may be formulated as

H0 : πj = πk−j+1, j = 1, . . . , [k/2],

where [z] is the largest integer less or equal than z and k is fixed
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The mixture-based test of symmetry Proposed test of symmetry

the NMk model with constrained πj (i.e., under H0) is nested in the NMk

model with unconstrained πj

for testing symmetry we may use a likelihood ratio test, based on the
deviance

LR = 2[`(θ̂)− `(θ̂0)]

θ̂ is the unconstrained maximum likelihood estimator of θ
θ̂0 is the maximum likelihood estimator under the constraint H0

under H0, LR is asymptotically distributed as a Chi-square with a number
of degrees of freedom equal to [k/2] (the number of constrained weights)

when k = 1 the NM degenerates to a single normal distribution and,
therefore, the null hypothesis of symmetry results automatically accepted

k depends both on the number of groups characterising the population
and on the level of skewness: therefore, there is not a one-to-one
correspondence between the mixture components and the groups
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Monte Carlo study

Monte Carlo study

We compare

the NM-based test with k selected through AIC
the NM-based test with k selected through BIC
traditional test of Gupta (1967)

1000 samples with a given size n and coming from a given density f (x)

n = 20, 50, 100

f (x): N (0, 1), t5, Laplace (Lap), symmetric NM3, χ2
1, χ2

5, χ2
10, standard

log-normal (logN)

nominal level α = 0.01, 0.05, 0.10

all analyses are implemented in R software
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Monte Carlo study Main results

Empirical significance levels from symmetric
distributions

n N(0, 1) t5 Lap NM3

α = 0.05
Mixture test (AIC) 20 0.059 0.061 0.069 0.093

50 0.069 0.076 0.075 0.079
100 0.078 0.083 0.096 0.060

Mixture test (BIC) 20 0.019 0.012 0.030 0.062
50 0.010 0.014 0.031 0.058
100 0.005 0.027 0.047 0.048

Gupta’s Test 20 0.038 0.030 0.044 0.037
50 0.038 0.029 0.035 0.045
100 0.043 0.032 0.037 0.045

the mixture-based test shows a performance very similar to that of Gupta’s test
when the number k of components is selected by means of BIC

when AIC is used for the model selection, an empirical level is observed
constantly higher than the nominal one (the type-I error is committed too often)
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Monte Carlo study Main results

Empirical power levels from skewed distributions

n χ2
1 χ2

5 χ2
10 logN

α = 0.05
Mixture test (AIC) 20 0.566 0.229 0.140 0.421

50 0.868 0.700 0.457 0.712
100 0.984 0.949 0.787 0.878

Mixture test (BIC) 20 0.422 0.115 0.059 0.305
50 0.825 0.335 0.147 0.649
100 0.968 0.690 0.326 0.834

Gupta’s Test 20 0.359 0.153 0.089 0.272
50 0.496 0.541 0.373 0.341
100 0.661 0.798 0.713 0.423

the tendency of the AIC method to choose a relatively high number of mixture
components results in an empirical power better than that obtained with the
variant using the BIC method and the Gupta’s test
also the variant of mixture-based test using BIC is almost always more powerful
than Gupta’s test
for all the three types of test, as the sample size increases, the empirical
significance level remains constant and the empirical power increases
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Empirical example

Empirical example

n = 10 observations about the process of tomato roots initiation

number of mixture components selection:

H0 false H0 true
k # par ˆ̀ AIC BIC # par ˆ̀ AIC BIC
1 2 -47.58 99.17 102.54 2 -47.58 99.17 102.54
3 5 -40.55 91.11 99.55 4 -43.39 94.79 101.55
5 7 -37.65 89.29 101.11 5 -42.56 95.12 103.56
7 9 -37.85 93.70 108.90 6 -42.76 97.51 107.65
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Empirical example

we perform the deviance test on the basis of models NM3 and NM5:

k = 3 k = 5
deviance 5.68 9.82
df 1 2
p-value 0.0172 0.0074

In both cases the hypothesis of symmetry is rejected

weights estimates:

k = 3 k = 5
π̂1 0.0000 0.0000
π̂2 0.8804 0.7569
π̂3 0.1196 0.1578
π̂4 – 0.0602
π̂5 – 0.0251

Gupta’s test does not reject the hypothesis of symmetry (S1 = 1.782, p =
0.0748)
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Empirical example
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Figure: Histogram of tomato roots data with the estimated density under the
unconstrained (dashed line) and constrained (solid line) NM3 and NM5 models.
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Conclusions

Conclusions

In this contribution we propose the use of normal mixture (NM) models for
testing symmetry about an unknown value

The proposed likelihood ratio test is based on formulating the hypothesis
of symmetry in terms of constraints on weights characterizing the NM
model

A Monte Carlo study outlined how the performance of the proposed test
depends on the criterion used to select the number of mixture
components: using BIC

a good empirical level of significance is obtained, comparable with that of the
traditional Gupta’s test
the empirical power resulted usually better than that observed with the
Gupta’s test
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Conclusions

Further developments

comparing the performance of the mixture-based test with
non-parametric symmetry tests (e.g., triples test)

studying the dependence between the empirical levels of the test and the
selected set of grid points δj

studying more in detail the relation between the empirical levels of the
test and the selected number of mixture components k

Bacci, Bartolucci (unipg) MMLV2012 21 / 23



References

Main references

Cabilio, P. and Masaro, J. (1996). A simple test of symmetry about an unknown median. The
Canadian Journal of Statistics, 24: 349 - 361.

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from incomplete data
via the EM algorithm (with discussion). Journal of the Royal Statistical Society, Series B, 39: 1 -
38.

Fan, Y. and Gencay, R. (1995). A consistent nonparametric test of symmetry in linear regression
models. Journal of American Statistical Association, 90(430): 551 - 557.

Gupta, M. (1967). An asymptotically non parametric test of symmetry. The Annals of
Mathematical Statistics, 38(3): 849 - 866.

Lindsay, B. (1996). Mixture Models: Theory, Geometry and Applications. Institute of Mathematical
Statistic.

McLachlan, G. and Peel, D. (2000). Finite mixture models. Wiley.

McWilliams, T. (1990). A distribution-free test for symmetry based on a runs statistic. Journal of
the American Statistical Association, 85(412): 1130 - 1133.

Bacci, Bartolucci (unipg) MMLV2012 22 / 23



References

Miao, W., Gel, Y., and Gastwirth, J. L. (2006). Random Walk, Sequential Analysis and Related
Topics - A Festschrift in Honor of Yuan-Shih Chow, chapter A new test of symmetry about an
unknown median. World Scientific.

Mira, A. (1999). Distribution-free test of symmetry based on bonferroniÕs measure. Journal of
Applied Statistics, 26(8): 959 - 971.

Modarres, R. and Gastwirth, J. (1996). A modified runs test for symmetry. Statistics & Probability
Letters, 31: 107 - 112.

Ngatchou-Wandji, J. (2006). On testing for the nullity of some skewness coefficients. International
Statistical Review, 74(1): 47 - 65.

Racine, J. and Maasoumi, E. (2007). A versatile and robust metric entropy test of
time-reversibility, and other hypotheses. Journal of Econometrics, 138: 547 - 567.

Randles, R., Fligner, M., Policello II, G., and Wolfe, D. (1980). An asymptotically distribution-free
test for symmetry versus asymmetry. Journal of the American Statistical Association, 75(369):
168 - 172.

Bacci, Bartolucci (unipg) MMLV2012 23 / 23


	Introduction
	The mixture-based test of symmetry
	The NM model
	Maximum likelihood estimation
	Proposed test of symmetry

	Monte Carlo study
	Main results

	Empirical example
	Conclusions
	References

