Mixtures of equispaced Normal distributions and their use for testing symmetry in univariate data

Silvia Bacci^{*1}, Francesco Bartolucci^{*}

* Dipartimento di Economia, Finanza e Statistica - Università di Perugia

University of Naples "Federico II", Naples, 17-19 May 2012

MMLV2012

¹silvia.bacci@stat.unipg.it

Bacci, Bartolucci (unipg)

Outline

Introduction

The mixture-based test of symmetry

- The NM model
- Maximum likelihood estimation
- Proposed test of symmetry

Monte Carlo study

Main results

Empirical example

5 Conclusions

References

.

Introduction

Starting point

- Let X₁, X₂,..., X_n be a random sample from a continuous distribution F(x) with density f(x)
- Let μ be the mean or the median of f(.)
- Problem of testing symmetry:

$$H_0: F(\mu - x) = 1 - F(\mu + x) \quad \forall x$$

against (hypothesis of skewness)

$$H_1: F(\mu - x) \neq 1 - F(\mu + x)$$
 for at least one x

 Aim: to propose a test of symmetry based on Normal finite mixture (NM) models (Lindsay, 1996; McLachlan and Peel, 2000)

・ロン ・四 と ・ 回 と ・ 回 と

Why testing symmetry?

- many parametric statistical methods are robust to the violation of the normality assumption of f(x), being the symmetry often sufficient for their validity
- knowledge about the symmetry of f(x) is relevant to choose which location parameter is more representative of the distribution, being mean, median, and mode not coincident in case of skewness
- in case-control studies the exchangeability is required for the joint distribution of observations of treated and controlled individuals: as exchangeability implies the symmetry of the distribution, knowing that a distribution is skewed allows to exclude its exchangeability
- nonparametric methods assume the symmetry of the distribution rather than its normality

・ロ・・ (日・・ 日・・ 日・・

How testing symmetry?

Traditional test based on the third sample standardised moment (Gupta, 1967)

$$b_1 = \frac{m_3}{m_2^{3/2}}$$

where $m_r = 1/n \sum_{i=1}^n (x_i - \bar{x})^r$, r = 2, 3

b1 is commonly used to estimate the third standardised population moment

$$\gamma_1 = \frac{\mu_3}{\mu_2^{3/2}}, \qquad \mu_r = E[(X - \mu)^r]$$

 for samples from a symmetric distribution with finite sixth order central moment,

$$b_1 \to \mathcal{N}(0, \sigma^2), \qquad \sigma^2 = \frac{\mu_6 - 6\mu_2\mu_4 + 9\mu_2^3}{n\mu_2^3}$$

- σ^2 is consistently estimated by substituting μ_j , j = 2, 4, 6, with the appropriate sample moments
- under H_0 ,

$$S_1 = \frac{n^{1/2}b_1}{\hat{\sigma}} \to \mathcal{N}(0,1)$$

- Drawbacks of Gupta's test
 - γ_1 is sensitive to outliers
 - γ_1 can be undefined for heavy-tailed distributions (e.g., Chauchy)
 - $\gamma_1 = 0$ not necessarily means that f(x) is symmetric
- Other tests based on alternative measures of skewness
 - Randles et al. (1980) for a triples test
 - McWilliams (1990), Modarres and Gastwirth (1996) for a runs test
 - Cabilio and Masaro (1996), Miao et al. (2006) for a test based on the Yule's skewness index
 - Mira (1999) for a test based on the Bonferroni's index
- Non-parametric tests based on the kernel estimation method
 - Fan and Gencay (1995), Ngatchou-Wandji (2006), Racine and Maasoumi (2007)
 - pros: a better goodness of fit is allowed with respect to parametric methods
 - cons: high number of unknown parameters

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ●

Our proposal

We know that:

- NM densities (with common variance) allow to approximate arbitrarily well any continuous (symmetric or skewed) distribution
- NM densities provide a convenient semi-parametric framework in which to model unknown distributions, by keeping
 - a parsimony close to that of full parametric methods as represented by a single density
 - the flexibility of nonparametric methods as represented by the kernel method

Therefore, we propose the use of NM densities for testing symmetry about an unknown value

・ロン ・四 と ・ 回 と ・ 回 と

The NM model

Density of a mixture of k normal components (NMk)

$$f(x) = \sum_{j=1}^k \pi_j \phi(x; \nu_j, \sigma^2),$$

- π_j (j = 1, ..., k) denotes the weight of the *j*-th component
- $\nu_j = \alpha + \beta \delta_j$ (j = 1, ..., k) denotes the support points of the mixture
- α is the centre of symmetry
- β is a scale parameter
- $\delta_1, \ldots, \delta_k$ is a grid of equispaced points between -1 and 1

Maximum likelihood estimation

Log-likelihood of NM_k

$$\ell(\boldsymbol{\theta}) = \sum_{i=1}^{n} \log \sum_{j=1}^{k} \pi_{j} \phi(x_{i}; \nu_{j}, \sigma^{2})$$

- $\boldsymbol{\theta} = (\alpha, \beta, \pi_1, \ldots, \pi_k)$
- $\ell(\theta)$ is maximised through an EM algorithm (Dempster et al., 1977)
- complete data log-likelihood

$$\ell_c(\boldsymbol{\theta}) = \sum_{i=1}^n \sum_{j=1}^k z_{ij} \log \phi(x_i; \nu_j, \sigma^2) + \sum_j z_{j} \log \pi_j$$

• *z_{ij}* is a dummy variable equal to 1 if the *i*-th observation belongs to the *j*-th component and to 0 otherwise

•
$$z \cdot j = \sum_i z_{ij}$$

Bacci, Bartolucci (unipg)

EM algorithm

• Step E: compute the expected value of z_{ij} , i = 1, ..., n and j = 1, ..., k, given the observed data $\mathbf{x} = (x_1, ..., x_n)$ and the current value of the parameters $\boldsymbol{\theta}$

$$\hat{z}_{ij} = \frac{\phi(x_i; \nu_j, \sigma^2)\pi_j}{\sum_h \phi(x_i; \nu_h, \sigma^2)\pi_h}$$

Step M: maximise ℓ_c(θ) with any z_{ij} substituted by ẑ_{ij}. The solution is reached when:

$$\beta = \frac{\sum_{i} \sum_{j} z_{ij} (x_{i} - \bar{x}) \delta_{j}}{\sum_{j} z_{\cdot j} (\delta_{j} - \bar{\delta}) \delta_{j}}; \quad \bar{x} = \sum_{i} x_{i}/n; \quad \bar{\delta} = \sum_{j} z_{\cdot j} \delta_{j}/k$$

$$\alpha = \bar{x} - \beta \bar{\delta}$$

$$\sigma^{2} = \sum_{i} \sum_{j} z_{ij} [x_{i} - (\alpha + \beta \delta_{j})]^{2}/n$$

$$\hat{\pi}_{j} = \frac{\hat{z}_{\cdot j}}{n} \quad j = 1, \dots, k$$

Selection of k

A crucial point with NM models concerns the choice of the number *k* of mixture components

- coherently with the main literature we suggest to use AIC and BIC indices
 - note that AIC tends to overestimate the true number of components
- we select k as an odd number
 - in this way there is one mixture component, the [(k+1)/2]-th, which corresponds to the centre of the distribution and its mean directly corresponds to the parameter α

・ロン ・四 と ・ 回 と ・ 回 と

Proposed test of symmetry

- in a symmetric density the components specular with respect to the centre of symmetry are represented in equal proportions, whereas in a skewed density they are mixed in different proportions
- therefore, if the sample observations come from a symmetric distribution, then the weights of mixture components equidistant from the centre of symmetry are equal, being different otherwise
- the hypothesis of symmetry may be formulated as

$$H_0: \pi_j = \pi_{k-j+1}, \quad j = 1, \dots, [k/2],$$

where [z] is the largest integer less or equal than z and k is fixed

・ロン ・回 ・ ・ ヨン・

- the NM_k model with constrained π_j (i.e., under H₀) is nested in the NM_k model with unconstrained π_j
- for testing symmetry we may use a likelihood ratio test, based on the deviance

$$LR = 2[\ell(\hat{\theta}) - \ell(\hat{\theta}_0)]$$

- $\hat{\boldsymbol{\theta}}$ is the unconstrained maximum likelihood estimator of $\boldsymbol{\theta}$
- $\hat{\theta}_0$ is the maximum likelihood estimator under the constraint H_0
- under H₀, LR is asymptotically distributed as a Chi-square with a number of degrees of freedom equal to [k/2] (the number of constrained weights)
- when k = 1 the NM degenerates to a single normal distribution and, therefore, the null hypothesis of symmetry results automatically accepted
- *k* depends both on the number of groups characterising the population and on the level of skewness: therefore, there is not a one-to-one correspondence between the mixture components and the groups

・ロット (母) ・ ヨ) ・ ヨ)

Monte Carlo study

- We compare
 - the NM-based test with k selected through AIC
 - the NM-based test with k selected through BIC
 - traditional test of Gupta (1967)
- 1000 samples with a given size n and coming from a given density f(x)
- n = 20, 50, 100
- f(x): N(0,1), t₅, Laplace (Lap), symmetric NM₃, χ²₁, χ²₅, χ²₁₀, standard log-normal (logN)
- nominal level $\alpha = 0.01, 0.05, 0.10$
- all analyses are implemented in R software

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Empirical significance levels from symmetric distributions

	п	N(0, 1)	t_5	Lap	NM ₃
		$\alpha = 0.05$			
Mixture test (AIC)	20	0.059	0.061	0.069	0.093
	50	0.069	0.076	0.075	0.079
	100	0.078	0.083	0.096	0.060
Mixture test (BIC)	20	0.019	0.012	0.030	0.062
	50	0.010	0.014	0.031	0.058
	100	0.005	0.027	0.047	0.048
Gupta's Test	20	0.038	0.030	0.044	0.037
	50	0.038	0.029	0.035	0.045
	100	0.043	0.032	0.037	0.045

- the mixture-based test shows a performance very similar to that of Gupta's test when the number *k* of components is selected by means of BIC
- when AIC is used for the model selection, an empirical level is observed constantly higher than the nominal one (the type-I error is committed too often)

Empirical power levels from skewed distributions

	п	χ^2_1	χ^2_5	χ^2_{10}	logN
	($\alpha = 0.05$			
Mixture test (AIC)	20	0.566	0.229	0.140	0.421
	50	0.868	0.700	0.457	0.712
	100	0.984	0.949	0.787	0.878
Mixture test (BIC)	20	0.422	0.115	0.059	0.305
	50	0.825	0.335	0.147	0.649
	100	0.968	0.690	0.326	0.834
Gupta's Test	20	0.359	0.153	0.089	0.272
	50	0.496	0.541	0.373	0.341
	100	0.661	0.798	0.713	0.423

- the tendency of the AIC method to choose a relatively high number of mixture components results in an empirical power better than that obtained with the variant using the BIC method and the Gupta's test
- also the variant of mixture-based test using BIC is almost always more powerful than Gupta's test
- for all the three types of test, as the sample size increases, the empirical significance level remains constant and the empirical power increases

Empirical example

- n = 10 observations about the process of tomato roots initiation
- number of mixture components selection:

	H ₀ false			H ₀ true				
k	∦ par	$\hat{\ell}$	AIC	BIC	∉ par	$\hat{\ell}$	AIC	BIC
1	2	-47.58	99.17	102.54	2	-47.58	99.17	102.54
3	5	-40.55	91.11	99.55	4	-43.39	94.79	101.55
5	7	-37.65	89.29	101.11	5	-42.56	95.12	103.56
7	9	-37.85	93.70	108.90	6	-42.76	97.51	107.65

イロト イヨト イヨト イヨト

we perform the deviance test on the basis of models NM₃ and NM₅:

	k = 3	k = 5
deviance	5.68	9.82
df	1	2
<i>p</i> -value	0.0172	0.0074

In both cases the hypothesis of symmetry is rejected

weights estimates:

	<i>k</i> = 3	<i>k</i> = 5
$\hat{\pi}_1$	0.0000	0.0000
$\hat{\pi}_2$	0.8804	0.7569
$\hat{\pi}_3$	0.1196	0.1578
$\hat{\pi}_4$	_	0.0602
$\hat{\pi}_5$	_	0.0251

Gupta's test does not reject the hypothesis of symmetry (S₁ = 1.782, p = 0.0748)

(日)

Figure: Histogram of tomato roots data with the estimated density under the unconstrained (dashed line) and constrained (solid line) NM₃ and NM₅ models.

Conclusions

- In this contribution we propose the use of normal mixture (NM) models for testing symmetry about an unknown value
- The proposed likelihood ratio test is based on formulating the hypothesis of symmetry in terms of constraints on weights characterizing the NM model
- A Monte Carlo study outlined how the performance of the proposed test depends on the criterion used to select the number of mixture components: using BIC
 - a good empirical level of significance is obtained, comparable with that of the traditional Gupta's test
 - the empirical power resulted usually better than that observed with the Gupta's test

・ロン ・四 と ・ 回 と ・ 回 と

Further developments

- comparing the performance of the mixture-based test with non-parametric symmetry tests (e.g., triples test)
- studying the dependence between the empirical levels of the test and the selected set of grid points δ_j
- studying more in detail the relation between the empirical levels of the test and the selected number of mixture components k

Main references

Cabilio, P. and Masaro, J. (1996). A simple test of symmetry about an unknown median. The Canadian Journal of Statistics, 24: 349 - 361.

Dempster, A. P., Laird, N. M., and Rubin, D. B. (1977). Maximum likelihood from incomplete data via the EM algorithm (with discussion). Journal of the Royal Statistical Society, Series B, 39: 1 - 38.

Fan, Y. and Gencay, R. (1995). A consistent nonparametric test of symmetry in linear regression models. Journal of American Statistical Association, 90(430): 551 - 557.

Gupta, M. (1967). An asymptotically non parametric test of symmetry. The Annals of Mathematical Statistics, 38(3): 849 - 866.

Lindsay, B. (1996). Mixture Models: Theory, Geometry and Applications. Institute of Mathematical Statistic.

McLachlan, G. and Peel, D. (2000). Finite mixture models. Wiley.

McWilliams, T. (1990). A distribution-free test for symmetry based on a runs statistic. Journal of the American Statistical Association, 85(412): 1130 - 1133.

Miao, W., Gel, Y., and Gastwirth, J. L. (2006). Random Walk, Sequential Analysis and Related Topics - A Festschrift in Honor of Yuan-Shih Chow, chapter A new test of symmetry about an unknown median. World Scientific.

Mira, A. (1999). Distribution-free test of symmetry based on bonferroniÕs measure. Journal of Applied Statistics, 26(8): 959 - 971.

Modarres, R. and Gastwirth, J. (1996). A modified runs test for symmetry. Statistics & Probability Letters, 31: 107 - 112.

Ngatchou-Wandji, J. (2006). On testing for the nullity of some skewness coefficients. International Statistical Review, 74(1): 47 - 65.

Racine, J. and Maasoumi, E. (2007). A versatile and robust metric entropy test of time-reversibility, and other hypotheses. Journal of Econometrics, 138: 547 - 567.

Randles, R., Fligner, M., Policello II, G., and Wolfe, D. (1980). An asymptotically distribution-free test for symmetry versus asymmetry. Journal of the American Statistical Association, 75(369): 168 - 172.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● の Q @