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Introduction

Starting point

Item Response Theory (IRT) models (Van der Linden and Hambleton, 1997)
are increasingly used to the assessment of individuals’ latent traits

They allow us to translate the qualitative information coming from the
questionnaire in a quantitative measurement of the latent trait

Main assumptions of traditional IRT models
Local independence

Unidimensionality of latent trait

Normality of latent trait
Note that as far as the Rasch type models (Rasch, 1960) no special distributive
assumption is need, to the detriment of restrictions on items’ parameters
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Introduction

Limits of traditional IRT models

A same questionnaire is usually used to measure several latent traits

We are interested in assessing and testing the correlation between
latent traits

Often, normality of latent trait is not a realistic assumption

In some contexts (e.g. health care) can be not only more realistic, but
also more convenient for the decisional process, to assume that
population is composed by homogeneous classes of individuals who
have very similar latent characteristics (Lazarsfeld and Henry, 1968;
Goodman, 1974), so that individuals in the same class will receive the
same kind of decision (e.g. clinical treatment).

To take into account these elements, several extensions and generalizations
of traditional IRT models have been proposed in the literature (see, for
instance, Wilson and De Boeck, 2004; Von Davier and Carstensen, 2007)
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Introduction

Multidimensional latent class IRT models

Bartolucci (2007) proposes a class of multidimensional latent class (LC) IRT
models characterized by these main features:

1 more latent traits are simultaneously considered (multidimensionality)

2 these latent traits are represented by a random vector with a discrete
distribution common to all subjects (each support point of such a
distribution identifies a different latent class of individuals)

3 either a Rasch or a two-parameter logistic (Birnbaum, 1968)
parameterisation may be adopted for the probability of a correct response
to each binary item

4 the conditional probability of a correct response to a given item is
constant for subjects belonging to different known groups (e.g. males and
females), i.e. covariates are not included
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Introduction

Aim of the contribution

Class of multidimensional LC IRT models can be extended in several ways.
We are mainly interested in:

1 taking into account ordinal polytomously-scored items,

2 including covariates to detect items with differential functioning

In this contribution we treat the first point, whereas the second one is object of
the contribution of Gnaldi, Bartolucci and Bacci.
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Types of parameterisations for ordinal polytomously-scored items

Basic notation (1)

Xj: response variable for the j-th item, with j = 1, . . . , r

r: number of items

lj: number of categories of item j, from 0 to lj − 1

φ
(j)
x|θ = p(Xj = x|Θ = θ): probability that a subject with ability level θ

responds by category x to item j (x = 1, . . . , lj)

φ
(j)
θ : probability vector (φ

(j)
0|θ, . . . , φ

(j)
lj−1|θ)′

γj: discrimination index of item j

βjx: difficulty parameter of item j and category x

gx(·): link function specific of category x
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Types of parameterisations for ordinal polytomously-scored items

Classification criteria (1)
On the basis of the specification of the link function gx(·) and on the basis of
the adopted constraints on the item parameters γj and βjx, different IRT
models for polytomous responses result.

Three classification criteria may be specified:

Type of link function

global (or cumulative) logits

g(φ(j)
θ ) = log

φ
(j)
x|θ + · · ·+ φ

(j)
lj|θ

φ
(j)
0|θ + · · ·+ φ

(j)
x−1|θ

= log
p(Xj ≥ x|θ)
p(Xj < x|θ) , x = 1, . . . , lj − 1,

local (or adjacent category) logits

gx(φ
(j)
θ ) = log

φ
(j)
x|θ

φ
(j)
x−1|θ

= log
p(Xj = x|θ)

p(Xj = x− 1|θ) , x = 1, . . . , lj − 1,
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Types of parameterisations for ordinal polytomously-scored items

Classification criteria (2)

Constraints on discrimination parameters

each item may discriminate differently from the others
all the items discriminate in the same way: γj = 1, j = 1, . . . , r.

Constraints on items and thresholds difficulty parameters

each item differs from the others for different distances between consecutive
response categories
the distance between difficulty levels from category to category within each
item is the same across all items (rating scale parameterisation):
βjx = βj + τx, where βj indicates the difficulty of item j and τx is the difficulty
of response category x, independently of item j
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Types of parameterisations for ordinal polytomously-scored items

Types of IRT models for ordinal polytomous items
Table 1: List of IRT models for polytomous responses

discrimination difficulty resulting resulting model
indices levels parameterisation Global logits Local logits

free free γj(θ − βjx) GRM GPCM
free constrained γj[θ − (βj + τx)] RS-GRM GRSM

constrained free θ − βjx 1P-GRM PCM
constrained constrained θ − (βj + τx) 1P-RS-GRM RSM

GRM: Graded Response Model (Samejima, 1969)
RS-GRM: Graded Response Model with a Rating Scale parameterisation
1P-GRM: Graded Response Model with fixed γj

1P-RS-GRM: Graded Response Model with a Rating Scale param. and fixed γj

GPCM: Generalized Partial Credit Model (Muraki, 1990)
GRSM: Generalized Rating Scale Model
PCM: Partial Credit Model (Masters, 1982)
RSM: Rating Scale Model (Andrich, 1978)
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The model

Basic notation (2)

s: number of latent variables corresponding to the different traits
measured by the items

Θ = (Θ1, . . . ,Θs): vector of latent variables

θ = (θ1, . . . , θs): one of the possible realizations of Θ

δjd: dummy variable equal to 1 if item j measures latent trait of type d,
d = 1, . . . , s
k: number of latent classes of individuals
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The model

Assumptions

Items are ordinal polytomously-scored
The parameterisation is one of those illustrated in Table 1
The set of items measures s different latent traits
Each item measures only one latent trait
The random vector Θ has a discrete distribution with support points
{ξ1, . . . , ξk} and weights {π1, . . . , πk}
The number k of latent classes is the same for each latent trait
Manifest distribution of the full response vector X = (X1, . . . ,Xk)

′:

p(X = x) =

C∑
c=1

p(X = x|Θ = ξc)πc

where πc = p(Θ = ζc) and (assumption of local independence)

p(X = x|Θ = ξc) =

r∏
j=1

p(Xj = x|Θ = ξc)
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The model

Some examples of models

Multidimensional LC GRM model (the most general model with global
logit link):

log
P(Xj ≥ x|θ)

P(Xj < x|θ)
= γj(

s∑
d=1

δjdθd − βjx) x = 1, . . . , lj − 1

Multidimensional LC GPCM model (the most general model with local
logit link):

log
P(Xj = x|θ)

P(Xj = x− 1|θ)
= γj(

s∑
d=1

δjdθd − βjx) x = 1, . . . , lj − 1

Multidimensional LC RSM model (the most special model with local logit
link):

log
P(Xj = x|θ)

P(Xj = x− 1|θ)
=

s∑
d=1

δjdθd − (βj + τx) x = 1, . . . , l− 1
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The model

Maximum log-likelihood estimation
Let i denote a generic subject and let η the vector containing all the free
parameters. The log-likelihood may be expressed as

`(η) =
∑

i

log[p(Xi = xi))]

Estimation of η may be obtained by the discrete (or LC) MML approach
(Bartolucci, 2007)

`(η) may be efficiently maximize by the EM algorithm (Dempster et al.,
1977)

The software for the model estimation has been implemented in MATLAB

Number of free parameters is given by:

#par = (k − 1) + sk +
[ r∑

j=1

(lj − 1)− s
]

+ a(r − s), a = 0, 1,

where a = 0 when γj = 1,∀j = 1, . . . , r, and a = 1 otherwise
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Model selection

A strategy for the model selection

1 selection of the optimal number k of latent classes

2 selection of the type of link function

3 selection of constraints on the item discrimination and difficulty
parameters

4 selection of the number of latent traits and detection of the item allocation
within each dimension
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Model selection

Some remarks

As concerns the ordering of the mentioned steps, the last three steps
may be considered flexible, being their inversion acceptable and formally
correct, since it leads to identical results

As concerns the choice of k, to avoid problems with multimodality of
log-likelihood function we suggest to repeat the step with different
random and deterministic starting values

Comparison between models at each step of the selection process may
be driven by an information criterion, such as BIC index, or, whereas
compared models are nested, by a likelihood ratio (LR) or a Wald test

Models compared at each step of the selection process differ only by one
type of element (k, link function, constraints on item parameters, or s), all
other elements being equal

To avoid too restrictive assumptions, at each step of the selection
process we suggest to adopt the most general parameterisations as
concerns the choice of those elements selected in subsequent steps (e.g.
we should base the selection of k on the basis of standard LC model).
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Application

The data

A set of 200 oncological Italian patients investigated about anxiety and
depression
Anxiety and depression assessed by the "Hospital Anxiety and
Depression Scale" (HADS) (Zigmond and Snaith, 1983)

2 latent traits: anxiety and depression
14 polytomous items: minimum 0 indicates a low level of anxiety or
depression; maximum 3 indicates a high level of anxiety or depression
Mean raw score for anxiety = 7.11 (σ = 4.15); mean raw score for
depression = 7.17 (σ = 4.17)
Correlation between raw scores on anxiety and on depression results very
high and equal to 0.98
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Application

Choice of k

Table 2: BIC values and log-likelihood (`) for k = 1, . . . , 10 latent classes

Deterministic start Random start
k BIC ` BIC (min) ` (max)
1 6529,040 -3153,151 6529,040 -3153,151
2 6080,051 -2814,635 6080,051 -2814,635
3 6034,468 -2677,822 6027,791 -2674,484
4 6197,736 -2645,435 6104,805 -2598,970
5 6415,568 -2640,330 6226,510 -2545,801
6 6610,982 -2624,016 6350,194 -2493,622
7 6823,831 -2616,420 6521,221 -2465,115
8 7040,847 -2610,907 6673,266 -2427,116
9 7274,232 -2613,578 6852,946 -2402,935
10 7467,897 -2596,389 7025,803 -2375,342

Bacci, Bartolucci, Gnaldi (unipg) CLADAG 2011 18 / 24



Application

Choice of link function and constraints on item
parameters
Table 3: Link function selection: BIC values and log-likelihood (`) for the
graded response- and the partial credit-type models

Global logit Local logit
BIC 5780,696 5817,877
` -2731,249 -2749,839

Table 4: Item parameters selection: log-likelihood, BIC values and LR test
results (deviance and p-value) between nested models

Model ` BIC Deviance p-value
GRM -2731,249 5780,696 – –
RS-GRM -2798,959 5778,230 135.4195 (vs GRM) 0.011
1P-GRM -2740,658 5735,875 18.8185 (vs GRM) 0.093
1P-RS-GRM -2843,227 5803,127 205.1375 (vs 1P-GRM) 0.000
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Application

Choice of dimensionality

Table 5: Bidimensional 1P-GRM and unidimensional 1P-GRM: log-likelihood,
BIC value and LR test results (deviance and p-value)

1P-GRM ` BIC Deviance p-value
Bidimensional -2740,658 5735,875 – –
Unidimensional -2741,285 5726,521 1.2529 0.5345
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Application

The selected model
In conclusion, we select a model based on a parameterisation of type
1P-GRM, with 3 latent classes and only one latent trait

log
P(Xj ≥ x|θ = ξc)

P(Xj < x|θ = ξc)
= θ − βjx x = 1, . . . , lj − 1 c = 1, 2, 3

Table 6: Estimated support points ξ̂c and weights π̂c of latent classes for the
unidimensional 1P-GRM.

Latent class c
Latent trait 1 2 3
Psychopatological disturbs -0.776 1.183 3.418
Probability 0.342 0.491 0.167

Patients who suffer from psychopatological disturbs are mostly represented in the
first two classes
Patients in class 1 present the least severe conditions; patients in class 3 present
the worst conditions
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Conclusions

Conclusions

In this contribution we extended the class of Multidimensional LC IRT
models of Bartolucci (2007) to ordinal polytomous items

The proposed class of models is flexible because it allows us several
different types of parameterisations

It is based on two main assumptions: (i) multidimensionality and (ii)
discreteness of latent trait

Further developments:

studying the problem of multimodality of the log-likelihood function
extending the proposed approach to take into account hierarchical data
structures
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