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Introduction

e Context:

analysis of longitudinal data (we refer to the case of ordinal response
variables y; depending on covariates x;)

e Problem:

taking into account the effect that unobservable factors have on
the occasion-specific response variables

* Different approaches:
1. Individual-specific random intercept model

2. Latent autoregressive (LAR) model (Chi and Reinsel, 1989)

3. Latent Markov (LM) regression model (Wiggins, 1973)
sAim:

We propose a generalization of the LAR model based on assuming a
latent Markov-switching AR(1) process with correlation coefficient
depending on the regime of the chain




Individual-specific random intercept model

The unobserved heterogeneity is taken into account
through individual-specific random intercepts
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T Parsimony

| The effect of unobservable factors is assumed to be time constant




LAR model

The unobserved heterogeneity is taken into account through
the inclusion, within subjects, of occasion-specific random
effects which follow an AR(1) process
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LAR model

T Parsimony
T The effect of unobservable factors is time varying

T In many applications, error terms are naturally represented by
continuous random variables

| Estimation may be problematic from the computational point of
view (Heiss, 2008)




LM regression model

The unobserved heterogeneity is taken into account
through the inclusion of a sequence of discrete latent
variables which follow a first-order Markov chain
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1. Any latent variable u; is conditionally independent of u;, ..., U; ., given
Ui, -1

2. The latent variable u;, can assume k different regimes (or states)




LM regression model

T It may reach a better fit than the LAR model
T It is easier to estimate than the LAR model

T It provides a classification of subjects in a reduced number of
groups

T It may be seen as a semi-parametric version of the LAR model

| Itis less parsimonious than the LAR model: the LM model is
based on k-1 initial probabilities and k(k-1) transition probabilities,
whereas the LAR model is based on only 2 parameters for the
latent process.




We formulate a model for longitudinal data based on the
assumption that the error terms follow a

Markov-switching AR(1) process (Hamilton, 1989)

e Main characteristics:

1. The latent process is continous as in the LAR model, but the
correlation coefficient is not restricted to be constant.

2. A set of different regimes are possible, with each regime
corresponding to a different value of the correlation coefficient

3. How a subject moves between regimes is governed by a time-
homogenous latent Markov chain

We expect that the resulting model has a fit comparable to that
of a LM model, but it is more parsimonious




Proposed model:

Markov-Switching LAR model (SW-LAR)

Assumptions of LAR model are substituted by:
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Note that every latent variable U, has marginal distribution
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SW-LAR model

V. y.eey Vo > follow a Markov chain with k latent states:

U

1. Each latent state corresponds to a correlation coefficient:

Prres Py

2. The latent states are characterized by a vector of initial
probabilities:

Ah=144} v=1..Kk

and by a transition probability matrix:

Il = {ﬂvov}, v,,v=1...,K




SW-LAR model: special cases

k =1 > Basic LAR model:

HH=1XA >

The correlation coefficient is the same for all
subjects and occasions

SW-LAR; model:

The correlation coefficient may be different
between subjects belonging to different
latent states, but not between occasions

SW-LAR, model:

The correlation coefficient may change
between subjects and occasions, since each
subject randomly moves betwen different
regimes




SW-LAR model: estimation

We maximize the log-likelihood:
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It is based on a T-dimensional integral

U

Seqguential numerical integration method

(Heiss, 2008 which is strictly related to Baum
et al., 1970)



SW-LAR model: sequential numerical integration
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Each integral above is computed by a Gaussian Quadrature




Application

« Data from the Health and Retirement Study (University of
Michigan)

* A set of 1000 American people who self-evaluated their health
status over 8 occasions

» Health status is an ordinal qualitative response variable: poor,
fair, good, very good, excellent

» Time-constant covariates. gender, race, education
* Time- varying covariate: age

» We consider three models: LAR, SW-LAR, with 2 latent
states, SW-LAR, with 2 latent states

Model selection criterion: BIC




Results: parameter estimates, maximum log-
likelihood and BIC

We have two different
levels of persistence of

the effect of the

unobservable factors
on the response
variables

SW-LAR; model
has only two more
parameters than
LAR model

LAR SW-LAR; SW-LAR,
Hq 7.327 9.152 7.645
My 4.195 5.275 4.301
M3 1.023 1.248 0.908
My -2.376 -3.028
female -0.057 0.044
non white -1.852 -2.207
education 1.588 1.940
age -0.101 -0.121
o 2.916 3.997
P 0.955 0.489
o -- 0.976
A 1 0.241 ;%
A, -- 0.759 873
log-likelihood -8884.7 -8795.6 -8818.2
# parameters Ao (@\712/
BIC 17838 1767 719

SW-LAR; model
has a better fit
than LAR model




What's next?

e Simulation study to detect the differences among LAR, LM and
SW-LAR models

* Implementation of a sequential numerical integration algorithm
to estimate a general SW-LAR model and to obtain standard
errors for the parameter estimates
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