Markov-switching autoregressive latent variable models for longitudinal data

Silvia Bacci University of Perugia (Italy)

Francesco Bartolucci University of Perugia (Italy)

Fulvia PennoniUniversity of Milano Bicocca (Italy)

silvia.bacci@stat.unipg.it

Summary

- Introduction
- Different approaches for the treatment of longitudinal data
- Proposed model: the Markov-switching LAR (SW-LAR) model
- SW-LAR model: special cases
- SW-LAR model: estimation
- Application
 - Future developments
- References

Introduction

• Context:

analysis of longitudinal data (we refer to the case of ordinal response variables y_{it} depending on covariates \mathbf{x}_{it})

Problem:

taking into account the effect that unobservable factors have on the occasion-specific response variables

• Different approaches:

- 1. Individual-specific random intercept model
- 2. Latent autoregressive (LAR) model (Chi and Reinsel, 1989)
- 3. Latent Markov (LM) regression model (Wiggins, 1973)

•Aim:

We propose a generalization of the LAR model based on assuming a latent Markov-switching AR(1) process with correlation coefficient depending on the regime of the chain

Individual-specific random intercept model

The unobserved heterogeneity is taken into account through individual-specific random intercepts

Ordinal response variable for subject i at occasion t with j = 1, ..., l categories

 $\log \frac{p(y_{it}) > j|u_{i0}, \mathbf{x}_{it}}{p(y_{it} \le j|u_{i0}, \mathbf{x}_{it})} = \mu_j + u_{i0} + \mathbf{x}_{it}' \boldsymbol{\beta}$

 $\forall t$

Random part of the intercept $u_{i0} \sim N(0, \sigma^2)$

Parsimony

↓ The effect of unobservable factors is assumed to be time constant

LAR model

The unobserved heterogeneity is taken into account through the inclusion, within subjects, of occasion-specific random effects which follow an AR(1) process

 $y_{i1}, ..., y_{iT}$ are conditionally independent given the latent variables u_{it} and the covariates x_{it}

$$\log \frac{p(y_{it}) > j | u_{it}, \mathbf{x}_{it})}{p(y_{it} \le j | u_{it}, \mathbf{x}_{it})} = \mu_j + u_{it} + \mathbf{x}_{it}' \beta$$
Occasion-specific contin

ccasion-specific continuous latent variable

$$u_{i1} \sim N(0, \sigma^2)$$
 for $t = 1$

$$u_{it} | u_{i,t-1} = \rho u_{i,t-1} + \varepsilon_{it} \quad \text{for } t > 1$$

$$\mathcal{E}_{it} \sim N(0, \sigma^2/\sqrt{1-\rho^2})$$

LAR model Parsimony The effect of unobservable factors is time varying In many applications, error terms are naturally represented by continuous random variables Estimation may be problematic from the computational point of view (Heiss, 2008)

LM regression model

The unobserved heterogeneity is taken into account through the inclusion of a sequence of discrete latent variables which follow a first-order Markov chain

 $y_{i1}, ..., y_{iT}$ are conditionally independent given the latent variables u_{it} and the covariates x_{it}

$$\log \frac{p(y_{it}) > j | u_{it}, \mathbf{x}_{it})}{p(y_{it} \le j | u_{it}, \mathbf{x}_{it})} = \mu_j + u_{it} + \mathbf{x}_{it}' \boldsymbol{\beta}$$

Occasion-specific discrete latent variable

1. Any latent variable u_{it} is conditionally independent of u_{i1} , ..., $u_{i, t-2}$ given $u_{i, t-1}$

2. The latent variable u_{ii} can assume k different regimes (or states)

LM regression model

- ↑ It may reach a better fit than the LAR model
- ↑ It is easier to estimate than the LAR model
- ↑ It provides a classification of subjects in a reduced number of groups
- ↑ It may be seen as a semi-parametric version of the LAR model

It is less parsimonious than the LAR model: the LM model is based on k-1 initial probabilities and k(k-1) transition probabilities, whereas the LAR model is based on only 2 parameters for the latent process.

We formulate a model for longitudinal data based on the assumption that the error terms follow a

Markov-switching AR(1) process (Hamilton, 1989)

Main characteristics:

- 1. The latent process is continous as in the LAR model, but the correlation coefficient is not restricted to be constant.
- 2. A set of different regimes are possible, with each regime corresponding to a different value of the correlation coefficient
- 3. How a subject moves between regimes is governed by a timehomogenous latent Markov chain

We expect that the resulting model has a fit comparable to that of a LM model, but it is more parsimonious

Proposed model:

Markov-Switching LAR model (SW-LAR)

Assumptions of LAR model are substituted by:

$$u_{it} | u_{i,t-1}, v_{it} = \rho_{v_{it}} u_{i,t-1} + \varepsilon_{it} \quad \text{for } t > 0$$

$$\mathcal{E}_{it} | v_{it} \sim N(0, \sigma^2 / \sqrt{1 - \rho_{v_{it}}^2})$$

Note that every latent variable u_{it} has marginal distribution $N(0, \sigma^2)$ as in the LAR model.

SW-LAR model: special cases

k = 1

 $\Pi = 1 \otimes \lambda'$

The correlation coefficient is the same for all subjects and occasions

SW-LAR₁ model:

The correlation coefficient may be different between subjects belonging to different latent states, but not between occasions

\implies SW-LAR₂ model:

The correlation coefficient may change between subjects and occasions, since each subject randomly moves betwen different regimes

Application

- Data from the Health and Retirement Study (University of Michigan)
- A set of 1000 American people who self-evaluated their health status over 8 occasions
- Health status is an ordinal qualitative response variable: poor, fair, good, very good, excellent
- Time-constant covariates: gender, race, education
- Time- varying covariate: age
- We consider three models: LAR, SW-LAR₁ with 2 latent states, SW-LAR₂ with 2 latent states
- •Model selection criterion: BIC

Results: parameter estimates, maximum loglikelihood and BIC

	LAR	$SW-LAR_1$	SW-LAR ₂	
μ_1	7.327	9.152	7.645	
μ_2	4.195	5.275	4.301	We have two different
μ_3	1.023	1.248	0.908	levels of persistence of
μ_4	-2.376	-3.028	-2.692	unobservable factors
female	-0.057	0.044	-0.059	on the response
non white	-1.852	-2.207	-1.876	variables
education	1.588	1.940	1.675	
age	-0.101	-0.121	-0.093	
σ	2.916	3.997	3.241	
$ ho_1$	0.955	0.489	0.441	SW-LAR ₁ model
ρ_2		0.976	1	has only two more
λ_1		0.241	0.127	parameters than
λ_2		0.759	0.873	LAR model
log-likelihood	-8884.7	-8795.6	-8818.2	SW-LAR, model
# parameters	(10)	(12)	12	has a better fit
BIC	17838	(17674	17719	than I AR model

What's next?

 Simulation study to detect the differences among LAR, LM and SW-LAR models

 Implementation of a sequential numerical integration algorithm to estimate a general SW-LAR model and to obtain standard errors for the parameter estimates

References

- Baum L.E., Petrie, T., Solues, G., and Weiss, N. (1970). A maximization technique occurring in the statistical analysis of probabilistic functions of Markov chains. Annals of Mathematical Statistics, 41, 164-171.
- Chi, E.M., and Reinsel, G.C. (1989). Models for longitudinal data with random effects and AR(1) errors. Journal of the American Statistical Association, 84, 452-459.
- Hamilton, J.D. (1989). A new approach to the economic analysis of nonstationary time series and the business cycle. Eocnometrica, 57, 357-384.
- Heiss, F. (2008). Sequential numerical integration in nonlinear state space models for microeconometric panel data. Journal of Applied Econometrics, 23, 373-389.
 - Wiggins, L.M. (1973). Panel analysis: latent probability models for attitude and behavior processes. Amsterdam: Elsevier.