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Motivation and purpose

� In the literature on latent variable models, there is a considerable
interest in estimation methods that do not require parametric
assumptions on the latent distribution

� We focus on an Item Response Theory model for ordinal responses
which is known as Graded Response Model

� We introduce a conditional likelihood estimator which requires no
assumptions on the latent distribution and is very simple to
implement

� The method also allows us to implement a Hausman test for a
parametric assumption (e.g., normal distribution) on the latent
distribution
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Graded Response Model (GRM)

� For a questionnaire of r items, let Xj denote the response variable
for the j-th item (j = 1, . . . , r), which is assumed to have lj

categories, indexed from 0 to lj − 1

� Assumptions of the GRM model (Samejima, 1969):

� unidimensionality: the test items contribute to measure a single
latent trait Θ corresponding to a type of ability in education

� local independence: the response variables X1, . . . ,Xr are
conditionally independent given Θ:

p(x1, . . . , xr |θ) =
r�

j=1

p(xj |θ)

� monotonicity: p(Xj ≥ x |θ) is nondecreasing in θ for all j :

log
p(Xj ≥ x |θ)
p(Xj < x |θ) = γj(θ − βjx), x = 1, . . . , lj − 1
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� γj identifies the discriminating power of item j (typically γj > 0)

� βjx denotes the difficulty level for item j and category x , ordered as
βj1 < . . . < βj ,lj−1

� We focus on a special case of GRM (1P-GRM) in which all the

items discriminate in the same way (van der Ark, 2001):

γ1 = · · · = γr = 1

� We also consider a further special case (1P-RS-GRM) based on the
rating scale parametrization (items have the same number of
response categories):

βjx = βj + τx , j = 1, . . . , r , x = 1, . . . , l − 1,

where βj represents the difficulty of item j and τx are cut-points
common to all items

Graded Response Model (5/24)



Maximum likelihood estimation

� Given a sample of observations xij , i = 1, . . . , n, j = 1, . . . , r ,
different maximum likelihood estimation methods may be used

� Under a fixed-effects formulation, the model may be estimated by
the Joint Maximum Likelihood (JML) method based on:

�J(λ) =
n�

i=1

log
r�

j=1

p(xij |θi ) =
n�

i=1

r�

j=1

log p(xij |θi )

with the parameter vector λ also including the ability parameters θi

� The JML method is simple to implement but it does not ensure
consistency of the parameter estimates and may suffer from
instability problems
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� Under a random-effects formulation, with the latent trait assumed
to have a normal distribution, we can use the Marginal Maximum

Likelihood (MML) method based on:

�M(η) =
n�

i=1

log

�
φ(θi ; 0,σ

2)
r�

j=1

p(xij |θi )dθi

with φ(θi ; 0,σ2) denoting the density function of N(0,σ2) and the
parameter vector η containing the item parameters and σ2

� The MML method is more complex to implement (requires a
quadrature for the integral) and the parameter estimates are
consistent under the hypothesis of normality of the latent trait

� In order to reduce the dependence of the parameter estimates on
parametric assumptions on the latent distribution, we can use a
semi-parametric method (MML-LC) based on the assumption that
the latent trait has a discrete distribution with k support points
(latent classes)
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� The MML-LC method is based on the marginal log-likelihood

function:

�LC (ψ) =
n�

i=1

log
k�

c=1

πc

r�

j=1

p(xij |θi = ξc)

with ξ1, . . . , ξk being the support points and π1, . . . ,πk the
corresponding mass probabilities; these are included in the
parameter vector ψ together with the item parameters

� The EM algorithm (Dempster et al., 1977) is typically used for the
maximization of �LC (ψ)

� A drawback of the method is the greater numerical complexity and
the need to choose k properly (AIC and BIC may be used in this
regard)

� Some instability problems may arise with large values of k
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Conditional maximum likelihood method
� We suggest a Conditional Maximum Likelihood (CML) method

based on considering all the possible dichotomizations of the
response variables (Baetschmann et al., 2011)

� For the case in which the response variables have the same number

l of response categories:

1. we consider the l − 1 dichotomizations indexed by d = 1, . . . , l − 1

2. for each dichotomization d we transform the response variables Xj

(for every unit) in the binary variables

Y
(d)
j = 1{Xj ≥ d}, j = 1, . . . , r ,

with 1{·} being the indicator function

3. we maximize the function given by the sum of the conditional

log-likelihood functions (Anderson, 1973) corresponding to each
dichotomization:

�∗C (β) =
l−1�

d=1

log p(y (d)
i1 , . . . , y (d)

ir |y (d)
i+ ), y

(d)
i+ =

r�

j=1

y
(d)
ij
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� The method relies on the fact that the dichotomized variable
distributions satisfy the Rasch (1961) model:

log
p(Y (d)

j = 1|θ)

p(Y (d)
j = 0|θ)

= θ − βjd , j = 1, . . . , r , d = 1, . . . , l − 1

� The total score Y
(d)
+

=
�r

j=1
Y

(d)
j is a sufficient statistic for the

ability parameter θ

� The resulting conditional probability involved in �∗C (β) has
expression:

p(y (d)i1 , . . . , y (d)ir |y (d)i+ ) =
exp

�
−
�r

j=1
y
(d)
ij βjx

�

�
z:z+=y (d)

i+
exp

�
−
�r

j=1
zjβjx

�

with
�

z:z+=y (d)
i+

extended to all binary vectors z of dimension r

with elements summing up to y
(d)
i+
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� The likelihood function �∗C (β) depends only on the item

parameters (βjx or βj) collected in β:

� under 1P-GRM the identifiable parameters are βjx for j = 2, . . . , r
and x = 1, . . . , l − 1 (we use the constraint β1x = 0,
x = 1, . . . , l − 1)

� under 1P-RS-GRM the identifiable parameters are βj for
j = 2, . . . , r (we use the constraint β1 = 0), whereas the cut-points
τx are not identified

� This function may be simply maximized by a Newton-Raphson

algorithm based on:

� pseudo score vector:

s∗C (β) =
n�

i=1

s∗C ,i (β), s∗C ,i (β) =
∂

∂β
log p(y (d)

i1 , . . . , y (d)
ir |y (d)

i+ )

� pseudo observed information matrix:

H∗
C (β) = −

n�

i=1

∂2

∂β∂β� log p(y
(d)
i1 , . . . , y (d)

ir |y (d)
i+ )
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� The asymptotic variance-covariance matrix may be obtained by the
sandwich formula:

V̂
∗
C (β̂

∗
C ) = H∗

C (β̂
∗
C )

−1S(β̂
∗
C )H

∗
C (β̂

∗
C )

−1

S(β) =
n�

i=1

s∗C ,i (β)[s
∗
C ,i (β)]

�

� Standard errors may be extracted in the usual way from V̂
∗
C (β̂

∗
C )

� On the basis of the pseudo score vector and information we can
also implement a Hausman (1978) test for the hypothesis of
normality in which the estimate β̂

∗
C is compared with the

corresponding estimate obtained from the MML method
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Simulation study of the CML estimator

� We simulated 1,000 samples of size n from the 1P-RS-GRM model
for r response variable with l = 5 categories:

� r = 5, 10 � n = 1000, 2000

� cut-points (τx) equal to −2,−0.5, 0.5, 2

� difficulty parameters (βj) as r equally distant points in [−2, 2]

� four different latent distributions (all are standardized):

� Normal(0,1) � Gamma(2,2)

� LC1: latent class model with symmetric distribution based on mass
probabilities 0.25, 0.5, 0.25 for increasing and equally spaced
support points

� LC2: as in LC1 but with skewed distribution based on mass
probabilities 0.4, 0.5, 0.1

� For all samples we fit 1P-GRM and 1P-RS-GRM by the MML,
MML-LC (k chosen by BIC), and CML methods
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Simulation results for 1P-GRM: average
values of absolute bias and RMSE for the estimates of parameters βjx

CML MML MML-LC

Distrib. n r abs.bias RMSE abs.bias RMSE abs.bias RMSE

N(0, 1) 1000 5 0.0121 0.1646 0.0112 0.1575 0.0019 0.1569

N(0, 1) 2000 5 0.0043 0.1134 0.0032 0.1080 0.0089 0.1081

N(0, 1) 1000 10 0.0085 0.1549 0.0085 0.1521 0.0156 0.1514

N(0, 1) 2000 10 0.0041 0.1086 0.0038 0.1069 0.0216 0.1083

Γ(2, 2) 1000 5 0.0070 0.1640 0.0634 0.1721 0.0053 0.1568

Γ(2, 2) 2000 5 0.0025 0.1139 0.0618 0.1306 0.0080 0.1098

Γ(2, 2) 1000 10 0.0150 0.1573 0.0474 0.1639 0.0128 0.1543

Γ(2, 2) 2000 10 0.0087 0.1088 0.0455 0.1189 0.0138 0.1074

LC1 1000 5 0.0109 0.1619 0.0221 0.1586 0.0071 0.1572

LC1 2000 5 0.0068 0.1126 0.0183 0.1101 0.0059 0.1077

LC1 1000 10 0.0056 0.1553 0.0144 0.1545 0.0059 0.1526

LC1 2000 10 0.0031 0.1068 0.0099 0.1063 0.0031 0.1050

LC2 1000 5 0.0115 0.1650 0.0305 0.1634 0.0080 0.1587

LC2 2000 5 0.0044 0.1157 0.0251 0.1163 0.0039 0.1116

LC2 1000 10 0.0089 0.1569 0.0199 0.1573 0.0084 0.1544

LC2 2000 10 0.0033 0.1104 0.0174 0.1117 0.0034 0.1089
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Simulation results for 1P-RS-GRM: average
values of absolute bias and RMSE for the estimates of parameters βj

CML MML MML-LC

Distrib. n r abs.bias RMSE abs.bias RMSE abs.bias RMSE

N(0, 1) 1000 5 0.0042 0.1005 0.0007 0.0955 0.0055 0.0960

N(0, 1) 2000 5 0.0012 0.0693 0.0030 0.0645 0.0078 0.0653

N(0, 1) 1000 10 0.0022 0.0923 0.0040 0.0936 0.0168 0.0902

N(0, 1) 2000 10 0.0013 0.0637 0.0030 0.0603 0.0199 0.0647

Γ(2, 2) 1000 5 0.0000 0.0988 0.0130 0.0945 0.0075 0.0940

Γ(2, 2) 2000 5 0.0015 0.0690 0.0125 0.0648 0.0105 0.0663

Γ(2, 2) 1000 10 0.0078 0.0920 0.0072 0.0861 0.0109 0.0890

Γ(2, 2) 2000 10 0.0046 0.0648 0.0108 0.0644 0.0154 0.0640

LC1 1000 5 0.0000 0.0978 0.0043 0.0905 0.0020 0.0945

LC1 2000 5 0.0037 0.0693 0.0040 0.0640 0.0025 0.0650

LC1 1000 10 0.0021 0.0947 0.0069 0.0968 0.0019 0.0801

LC1 2000 10 0.0011 0.0646 0.0036 0.0647 0.0012 0.0620

LC2 1000 5 0.0040 0.1003 0.0095 0.0955 0.0008 0.0953

LC2 2000 5 0.0028 0.0718 0.0082 0.0705 0.0038 0.0678

LC2 1000 10 0.0038 0.0951 0.0063 0.0844 0.0032 0.0819

LC2 2000 10 0.0007 0.0662 0.0044 0.0608 0.0011 0.0638
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Main conclusions from the simulation study

� Very similar performances are observed in terms of efficiency under
the normal distribution (the MML method is the most efficient,
but the RMSE of the CML estimator is rather close)

� A certain bias arises for the MML method when the distribution is
not normal (especially in the Gamma(2,2) case), whereas this bias
is negligible for the CML method and the MML-LC method

� When the latent distribution is not normal, and then the MML
estimator is biased, the CML method performs very similarly to the
MML-LC method, with a negligible loss of efficiency of the CML
method
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Hausman test for normality of the latent trait

� The hypothesis of normality on which the MML method is based
may be tested by a Hausman test statistic:

T = (β̂
∗
M − β̂

∗
C )

�Ŵ
−1

(β̂
∗
M − β̂

∗
C )

with β̂
∗
M being the estimator based on the MML method under the

constraint β1x = 0, x = 1, . . . , l − 1

� Ŵ is the estimate of the variance-covariance matrix of β̂
∗
M − β̂

∗
C

obtained starting from the sandwich formula (β̂
∗
M is a function of

λ̂M):

V̂

�
λ̂M

β̂
∗
C

�
=

�
HM(λ̂M) O

O H∗
C (β̂

∗
C )

�−1

S∗

�
λ̂M

β̂
∗
C

��
HM(λ̂M) O

O H∗
C (β̂

∗
C )

�−1

S∗

�
λ̂M

β̂
∗
C

�
=

n�

i=1

�
sM,i (λ̂M)

sC ,i (β̂
∗
C )

��
sM,i (λ̂M)� sC ,i (β̂

∗
C )

�
�
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� Under the 1P-GRM model, the asymptotic null distribution of T is
χ2((r − 1)(l − 1))

� Under the 1P-RS-GRM model, the asymptotic null distribution of
T is χ2(r − 1)

� If the hypothesis of normality is rejected, we estimate the model in
a semi-parametric way by the MML-LC method
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Application
� We consider a dataset (available in R) referred to a sample of

n = 392 individuals from UK extracted from the Consumer
Protection and Perceptions of Science and Technology section of
the 1992 Euro-Barometer Survey

� The dataset is based on the responses to r = 7 items (with l = 4
ordered categories):

� Comfort Science and technology are making our lives healthier, easier and more

comfortable

� Environment Scientific and technological research cannot play an important role

in protecting the environment and repairing it

� Work The application of science and new technology will make work more

interesting

� Future Thanks to science and technology, there will be more opportunities for

the future generations

� Technology New technology does not depend on basic scientific research

� Industry Scientific and technological research do not play an important role in

industrial development

� Benefit The benefits of science are greater than any harmful effect it may have
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Estimation results of CML and MML methods (under the
constraint β1x = 0, x = 1, . . . , l − 1)

1st cut-point 2nd cut-point 3rd cut-point

CML

Environment 1.966 (.487) 1.531 (.211) -0.628 (.189)

Work 2.125 (.468) 1.688 (.208) 0.698 (.197)

Future 1.115 (.488) 1.051 (.198) -0.121 (.183)

Technology 1.401 (.529) 1.395 (.202) -0.598 (.195)

Industry 0.742 (.577) 0.514 (.220) -1.121 (.189)

Benefit 1.580 (.425) 1.558 (.200) 0.203 (.185)

Log-lik. -1734.413

MML

Environment 1.885 (.486) 1.533 (.215) -0.609 (.170)

Work 2.049 (.465) 1.716 (.213) 0.623 (.183)

Future 1.086 (.479) 1.076 (.203) -0.116 (.168)

Technology 1.357 (.524) 1.394 (.207) -0.576 (.176)

Industry 0.719 (.563) 0.499 (.227) -1.013 (.167)

Benefit 1.524 (.424) 1.590 (.207) 0.169 (.171)

Log-lik. -3014.706
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� The Hausman test leads to reject the hypothesis of normality:

T = 39.9106, Prob
�
χ2

18 > T
�
= 0.002146

� We then estimate the model by the MML-LC method with k = 3
latent classes obtaining:

c ξ̂c π̂c
1 -1.158 0.265
2 -0.073 0.548
3 1.851 0.187

� The latent distribution is standardized and skewed (skewness index
= 0.777)
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Estimation results from the MML-LC method with k = 3

1st cut-point 2nd cut-point 3rd cut-point

Environment 1.848 (.537) 1.497 (.282) -0.623 (.182)

Work 2.011 (.528) 1.682 (.293) 0.639 (.185)

Future 1.067 (.480) 1.050 (.225) -0.116 (.164)

Technology 1.332 (.519) 1.371 (.262) -0.582 (.212)

Industry 0.701 (.602) 0.493 (.203) -1.030 (.219)

Benefit 1.506 (.479) 1.557 (.282) 0.174 (.158)

Log-lik. -3010.826

� The estimates of the item parameters are rather similar with
respect to the MML method and the log-likelihood is higher

� The influence on prediction of the latent ability may be
considerable (prediction for a certain subject on the basis of the
sequence of responses he/she provided through a posterior
expected value)
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Conclusions

� The proposed method for estimating the parameters of a
constrained version of GRM is very simple to implement and is
consistent under any true distribution of the latent trait

� The method seems to provide an efficient estimator (efficiency
close to the MML estimator under the normal distribution)

� It also allows us to implement a Hausman test for the hypothesis

of normality

� When the hypothesis of normality is rejected, the semi-parametric

MML-LC method is an interesting alternative to MML

� Even if significant differences are not observed in terms of
estimates of the item parameters, the effect on prediction of the

ability levels may be relevant
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