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Introduction

Problem: a crucial point with LC models is represented by the selection
of the number of latent classes

In the following two different studies are illustrated

Study 1: comparison among several information criteria in the frame of
multivariate LM models

Study 2: proposal of a new Hausman-type test in the frame of GLMMs with
discrete random effects
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Introduction Information criteria

Model selection criteria

Usually, the selection of the number of components in LC models relies
on the information criteria, consisting in penalized versions of the
maximum log-likelihood, where the penalization term accounts for the
number of parameters

Information criteria represent a compromise between goodness-of-fit and
model parsimony

The optimal number of components is that corresponding to the minimum
value of the corresponding index

In practice, we fit a given LC model for increasing values of k until the
index does not start to increase and we select the previous k as the
optimal number of components
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Introduction Information criteria

Akaike’s Information Criterion (AIC - Akaike, 1973)

AIC = −2 ˆ̀+ 2 ·#par

Bayesian Information Criterion (BIC - Schwarz, 1978)

BIC = −2 ˆ̀+ #par · log(n)

Consistent AIC (Bozdogan, 1987)

CAIC = −2 ˆ̀+ #par · (log(n) + 1)

AIC3 (Bozdogan, 1993)

AIC3 = −2 ˆ̀+ 3 ·#par
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Introduction Information criteria

HT-AIC (Hurvich and Tsai, 1989)

HT− AIC = −2 ˆ̀+ 2#par +
2(#par + 1)(#par + 2)

n−#par− 2

AICc (Hurvich and Tsai, 1993)

AICc = −2 ˆ̀+ 2
#par(#par− 1)

n−#par− 1

Adjusted BIC (Sclove, 1987)

BIC∗ = −2 ˆ̀+ #par log
n + 2

24

Adjusted CAIC (Yang and Yang, 2007)

CAIC∗ = −2 ˆ̀+ #par
(

log
n + 2

24
+ 1
)
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Study 1: Selection of latent states in LM models Classification-based information criteria

Classification-based criteria

In the context of multivariate LM models, we propose a comparison with a
different type of criteria developed in the context of the classification likelihood
approach, based on the relation

`∗(θ) = `(θ)− EN

where EN is the entropy, which takes explicitly into account the partition of
observations in different latent states and it denotes a penalization term which
measures the quality of the partition and it is defined as (Hernando et al.,
2005)

EN = −
∑

u1

. . .
∑

uT

fu1,...uT |y log(fu1,...uT |y) =

= −
∑

u1

. . .
∑

uT

f (1)
u1|y · f

(2)
u2|u1,y · . . . · f

(t)
ut|ut−1,y · . . . · f

(T)
uT |uT−1,y·

· [log(f (1)
u1|y) + log(f (2)

u2|u1,y) + . . .+ log(f (t)
ut|ut−1,y) + . . .+ log(f (T)

uT |uT−1,y)]
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Study 1: Selection of latent states in LM models Classification-based information criteria

with
f (t)
u|y =

q(t)
u,y · q̄

(t)
u,y

p(Y = y)

f (t)
u|v,y =

f (t−1,t)
v,u|y

f (t−1)
v|y

=
q(t−1)

v,y π
(t)
u|vφy(t)|uq̄(t)

u,y

p(Y = y)
· p(Y = y)

q(t−1)
v,y q̄(t−1)

v,y
=

= π
(t)
u|vφy(t)|u ·

q̄(t)
u,y

q̄(t−1)
v,y
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Study 1: Selection of latent states in LM models Classification-based information criteria

We may also formulate an approximation for EN, under the assumption that
u(t) are independent given Y:

EN1 = −
∑

u1
. . .
∑

uT
f (t)
u|y log(f (t)

u|y)

or a possible variant of EN1 given by EN2 = −
∑

u1
. . .
∑

uT
f (t)
u|y log(f (t)

u|y)/T

Example: T=3

EN = −
∑

u

∑
v

∑
z

fu,v,z|y log(fu,v,z|y) =

= f (3|2)
z|v,y · f

(2|1)
v|u,y · f

(1)
u|y ·

· [log(f (3|2)
z|v,y ) + log(f (2|1)

v|u,y ) + log(f (1)
u|y )]

EN1 = −[f (1)
u|y · log(f (1)

u|y ) + f (2)
v|y · log(f (2)

v|y ) + f (3)
z|y · log(f (3)

z|y )]

EN2 =
1
3

EN1
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Study 1: Selection of latent states in LM models Classification-based information criteria

Some classification-based criteria are (McLachlan and Peel, Chap. 6)
Classification Likelihood information Criterion (CLC)

CLC = −2`(θ) + 2 · EN

Approximated Integrated Classification Likelihood criterion (ICL-BIC)

ICL− BIC = BIC + 2 · EN

Normalized Entropy Criterion (NEC)

NEC =
EN

`(θ)− `1(θ)
k ≥ 2

where `1(θ) is the maximum log-likelihood in case of k = 1, and NEC = 1
if k = 1
Approximated NECs:

NEC1 =
EN1

`(θ)− `1(θ)
k ≥ 2

NEC2 =
EN2

`(θ)− `1(θ)
k ≥ 2
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Study 1: Selection of latent states in LM models Monte Carlo study

Monte Carlo simulation study

We compare

AIC, CAIC, AIC3, BIC

CLC, ICL-BIC, NEC, NEC1, NEC2

100 samples with a given size n and coming from a multivariate LM
model, characterized by r binary (y = 0, 1) response variables observed
in T time occasions, k latent states, and given values of initial probabilities
πu, transition probabilities π(t)

u|v, conditional response probabilities φ(t)
jy|u

n = 250, 500, 1000

r = 1, 3, 5

T = 5, 10

k = 2, 3

all analyses are implemented in R software
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Study 1: Selection of latent states in LM models Main results

Scenery 1

n = 250, T = 5, k = 2

φ
(t)
j0|u=1 = 0.8 = φ

(t)
j1|u=2, φ

(t)
j0|u=2 = 0.2 = φ

(t)
j1|u=1

π1 = 0.5 = π2

π
(t)
1|1 = 0.7 = π

(t)
2|2, π

(t)
1|2 = 0.3 = π

(t)
2|1 (time homogenous assumption)

r = 1, 3, 5
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Study 1: Selection of latent states in LM models Main results

Scenery 1: Relative frequencies of k chosen on the basis of several criteria

k BIC AIC AIC3 CAIC NEC NEC1 NEC2 CLC ICL-BIC

r = 1
1 0.52 0.00 0.10 0.63 1.00 1.00 0.99 1.00 1.00
2 0.48 0.98 0.90 0.37 0.00 0.00 0.01 0.00 0.00
3 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00
r = 3
1 0.00 0.00 0.00 0.00 0.88 0.92 0.00 0.88 0.95
2 1.00 0.83 0.98 1.00 0.10 0.07 0.96 0.10 0.04
3 0.00 0.16 0.02 0.00 0.01 0.01 0.04 0.01 0.01
4 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.01 0.00
r = 5
1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 1.00 0.77 1.00 1.00 1.00 1.00 1.00 1.00 1.00
3 0.00 0.15 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4 0.00 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00
5 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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Study 1: Selection of latent states in LM models Main results

Scenery 2

n = 250, T = 5, k = 2

φ
(t)
j0|u=1 = 0.7 = φ

(t)
j1|u=2, φ

(t)
j0|u=2 = 0.3 = φ

(t)
j1|u=1

π1 = 0.5 = π2

π
(t)
1|1 = 0.9 = π

(t)
2|2, π

(t)
1|2 = 0.1 = π

(t)
2|1 (time homogenous assumption)

r = 1, 3, 5
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Study 1: Selection of latent states in LM models Main results

Scenery 2: Relative frequencies of k chosen on the basis of several criteria

k BIC AIC AIC3 CAIC NEC NEC1 NEC2 CLC ICL-BIC

r = 1
1 0.35 0.01 0.02 0.53 1.00 1.00 1.00 1.00 1.00
2 0.65 0.98 0.97 0.47 0.00 0.00 0.00 0.00 0.00
3 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00
r = 3
1 0.00 0.00 0.00 0.00 1.00 1.00 0.09 1.00 1.00
2 1.00 0.92 0.995 1.00 0.00 0.00 0.855 0.00 0.00
3 0.00 0.07 0.005 0.00 0.00 0.00 0.015 0.00 0.00
4 0.00 0.01 0.00 0.00 0.00 0.00 0.015 0.00 0.00
5 0.00 0.00 0.00 0.00 0.00 0.00 0.025 0.00 0.00
r = 5
1 0.00 0.00 0.00 0.00 0.285 0.77 0.00 0.285 0.55
2 1.00 0.78 0.995 1.00 0.59 0.22 0.98 0.59 0.445
3 0.00 0.205 0.005 0.00 0.03 0.005 0.015 0.035 0.005
4 0.00 0.01 0.00 0.00 0.07 0.005 0.005 0.070 0.00
5 0.00 0.005 0.00 0.00 0.025 0.00 0.000 0.025 0.00
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Study 1: Selection of latent states in LM models Main results

Scenery 3

n = 500, T = 5, k = 3

φ
(t)
j0|u=1 = 0.9 = φ

(t)
j1|u=2, φ

(t)
j0|u=2 = 0.1 = φ

(t)
j1|u=1, φ

(t)
j0|u=3 = 0.4,

φ
(t)
j1|u=3 = 0.6

π1 = π2 = π3 = 0.33

π
(t)
1|1 = π

(t)
2|2 = π

(t)
3|3 = 0.80, π

(t)
2|1 = 0.15 = π

(t)
2|3, π

(t)
3|1 = 0.05 = π

(t)
1|3,

π
(t)
1|2 = 0.10 = π

(t)
3|2 (time homogenous assumption)

r = 1, 3, 5
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Study 1: Selection of latent states in LM models Main results

Scenery 3: Relative frequencies of k chosen on the basis of several criteria

k BIC AIC AIC3 CAIC NEC NEC1 NEC2 CLC ICL-BIC

r = 1
1 0.00 0.00 0.00 0.00 1.00 1.00 0.92 1.00 1.00
2 1.00 0.98 0.99 1.00 0.00 0.00 0.07 0.00 0.00
3 0.00 0.02 0.01 0.00 0.00 0.00 0.01 0.00 0.00
r = 3
1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 0.03 0.00 0.00 0.10 1.00 1.00 1.00 1.00 1.00
3 0.97 0.81 1.00 0.90 0.00 0.00 0.00 0.00 0.00
4 0.00 0.19 0.00 0.00 0.00 0.00 0.00 0.00 0.00
r = 5
1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00
3 1.00 0.78 0.99 1.00 0.00 0.00 0.00 0.00 0.00
4 0.00 0.20 0.01 0.00 0.00 0.00 0.00 0.00 0.00
5 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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Study 1: Selection of latent states in LM models Main results

Conclusions

We compared several criteria for the selection of the number of latent
states in the LM models

AIC, BIC and their variants present a better general behavior with respect to
the classification-based criteria
classification-based criteria tend to underestimate the true number of latent
states, mainly for the univariate case
the behavior of classification-based criteria improves by increasing the
number of observed response variables
by increasing the number k of latent states the performance of all considered
criteria gets worse
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Study 1: Selection of latent states in LM models Main results
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Study 2: Hausman-type test for GLMMs with discrete random effects

Motivation

Generalized Linear Mixed Models (GLMMs) represent a very useful
instrument for the analysis of clustered data

Applications:

Item Response Theory (IRT)

multilevel data (individuals collected in groups)

longitudinal/panel data (repeated responses)

We focus on the relevant case of binary responses and then on the
(random-effects) logistic regression model and the extension of this
model to deal with ordinal data

The random-effects included in a GLMM are typically assumed to have a
normal distribution
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Study 2: Hausman-type test for GLMMs with discrete random effects

The study of the consequences of the normality assumption has
considerable attention especially for the logistic regression model (less
attention on linear models)

Some studies (Neuhaus et al., 1992) report that the effect of the
normality assumption is moderate when this assumption is not true

More recent studies conclude that the impact may be considerable on the
quality of the estimates and random-effects prediction (e.g. Heagerty,
1999; Rabe-Hesketh et al., 2003; Agresti et al., 2004)

A flexible way to formulate the distribution of the random-effects is based
on assuming a discrete distribution that leads to a finite mixture model

This approach is seen as semiparametric and it is strongly related to the
nonparametric maximum likelihood approach (Kiefer and Wolfowitz,
1956; Laird, 1978; Lindsay, 1983)
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Study 2: Hausman-type test for GLMMs with discrete random effects

Relevant applications:
Lindsay et al. (1991) in the IRT context
Aitkin (1999) in the general context of clustered data
Vermunt (2003) specifically in the context of multilevel data
Heckman and Singer (1984) for a flexible model for survival data
Aitkin (1996) to create overdispersion in a generalized linear model

Other pros of the finite mixture approach for GLMMs:
it avoids complex computational methods to integrate out the random-effects
it leads to a natural clustering of sample units that may be of main interest
for certain relevant applications (e.g., Deb, 2001) as in a latent class model
(Lazarsfeld and Henry, 1968; Goodman, 1974)

Cons:
difficult interpretation in certain contexts (when random-effects represent
missing covariates seen as continuous)
need to choose the number of mixture components
some instability problems in estimation also due to the multimodality of the
likelihood function that often arises
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Study 2: Hausman-type test for GLMMs with discrete random effects

Testing the hypothesis that the mixing distribution is normal has attracted
considerable attention in the recent statistical literature

Among the available approaches we recall the Hausman’s test
(Hausman, 1978)

No approaches seem to be tailored to the case of finite mixture GLMMs

We develop the approach of Tchetgen and Coull (2006) for logistic
models, for binary and ordinal responses, to test the hypothesis that the
mixing distribution of random-effects is discrete (finite mixture)

The approach is based on the comparison of conditional and marginal
maximum likelihood estimates for the fixed effects, as in the Hausman’s
test (Hausman, 1978)

Since none of the two estimators compared is ensured to be fully
efficient, we use a generalized estimate of the variance-covariance matrix
of the difference between the two estimators (Bartolucci et al., 2014)

The proposed test may also be used to select the number of support
points of the discrete distribution (or mixture components)
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Class of models of interest

Basic notation

For other details we rely on Lecture 1, section “LC models with
covariates” and “Example 3”

n: number of clusters (individuals in the case of longitudinal studies or
IRT)

Ji: number of observations for cluster i

yij: binary (yij = 0, 1) or ordered (yij = 0, . . . ,L− 1) response of unit j
belonging to cluster i

yi = (yi1, . . . , yiJi): vector of binary or ordered responses for cluster i

xi: column vector of cluster-specific covariates

zij: column vector of unit-specific covariates
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Class of models of interest Base-line models

Base-line models

In case of binary responses, the following random intercept logit model
follows

log
p(yij = 1|αi, xi, zij)

p(yij = 0|αi, xi, zij)
= αi + x′iβ + z′ijγ, i = 1, . . . , n, j = 1, . . . , Ji, (1)

β is the vector of regression parameters for the cluster-specific covariates

γ is the vector of regression parameters for the unit-specific covariates

αi are cluster-specific random-effects that in the standard case have a
normal distribution with unknown variance σ2

We assume that the random-effects have a discrete distribution with:
k support points ξ1, . . . , ξk

mass probabilities π1, . . . , πk, where πh = p(αi = ξh)

Local independence is also assumed: conditional independence between
the responses yi given the random-effects αi and the covariates xi and
Zi = (zi1, . . . , ziJi)
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Class of models of interest Base-line models

With ordinal response variables, the model may be formulated on the
basis of global logits as (Model-ord1)

log
p(yij ≥ l|αi, xi, zij)

p(yij < l|αi, xi, zij)
= αi + δy + x′iβ + z′ijγ, l = 1, . . . ,L− 1, (2)

with cutpoints δ1 > · · · > δL−1

An alternative formulation is based on cluster-specific cutpoints
(Model-ord2):

log
p(yij ≥ l|αi, xi, zij)

p(yij < l|αi, xi, zij)
= αil + x′iβ + z′ijγ, l = 1, . . . ,L− 1, (3)

with αi = (αi1, . . . , αi,L−1) having multivariate normal distribution N(0,Σ)

or a discrete distribution with support points ξ1, . . . , ξk and corresponding
probabilities πh = p(αi = ξh), h = 1, . . . , k.
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Class of models of interest Extended models

Extended models

All the above models may be extended to deal with the dependence of
the random effects on one or more cluster-specific covariates wi (which
may be a subset of xi), which may be seen as a form of endogeneity

First extension: an interaction term is included as (binary case)

log
p(yij = 1|αi,wi, xi, zij)

p(yij = 0|αi,wi, xi, zij)
= w′iαi+x′iβ+z′ijγ, i = 1, . . . , n, j = 1, . . . , Ji, (4)

Second extension: the mass probabilities depend on the covariates by a
multinomial logit parameterization (binary case):

log
p(αi = ξh+1|wi)

p(αi = ξ1|wi)
= φh + w′iψh, h = 1, . . . , k − 1, (5)

or alternative parameterizations when the support points are ordered
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Estimation methods Discrete Marginal Maximum Likelihood (MML)

Discrete Marginal Maximum Likelihood (MML)

The assumption of local independence implies

p(yi|αi, xi,Zi) =
∏

j

p(yij|αi, xi, zij)

The manifest distribution of yi given the covariates is obtained by
marginalizing p(yi|αi, xi,Zi) with respect to αi

p(yi|xi,Zi) =
∑

h

[∏
j

p(yij|ξh, xi, zij)

]
πh

The marginal log-likelihood function is

`M(θ) =
∑

i

log p(yi|xi,Zi) =
∑

i

log
∑

h

[∏
j

p(yij|ξh, xi, zij)

]
πh

with θ denoting the overall vector of free parameters
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Estimation methods Discrete Marginal Maximum Likelihood (MML)

Maximization of `M(θ) may be efficiently performed by an Expectation
Maximization (EM) algorithm

The EM algorithm is based on the complete-data log-likelihood function

`∗M(θ) =
∑

i

ahi

[
logπh +

∑
j

log p(yij|ξh, xi, zij)

]
,

with ahi being an indicator variable equal to 1 if αi = ξh and to 0 otherwise

The algorithm alternates two steps until convergence:

E-step: compute the posterior expected value of each ahi which is equal to
the posterior probability âhi = p(αi = ξh|xi, yi,Zi)

M-step: maximize the function `∗M(θ) with each ahi substituted by âhi
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Estimation methods Discrete Marginal Maximum Likelihood (MML)

The asymptotic variance-covariance matrix of the MML estimator θ̂M may
be estimated by the sandwich formula (White, 1982)

V̂M(θ̂M) = HM(θ̂M)−1 SM(θ̂M)HM(θ̂M)−1, (6)

with

HM(θ) =
∑

i

∂2 log p(yi|xi,Zi)

∂θ∂θ′
,

SM(θ) =
∑

i

uM,i(θ)[uM,i(θ)]′,

uM,i(θ) =
∂ log p(yi|αi, xi,Zi)

∂θ
.

The MML approach is easily adapted to estimate extended models with
endogeneity
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Estimation methods Conditional Maximum Likelihood (CML)

Conditional Maximum Likelihood (CML)

The CML method (Andersen, 1970, Chamberlain, 1980) may be used to
consistently estimate the parameters γ for the covariates in Zi under mild
assumptions (mainly time-constant individual effects)

For binary data, the conditional log-likelihood function has expression

`C(γ) =
∑

i

log p(yi|yi+,Zi), yi+ =

J∑
j=1

yij,

with
p(yi|Zi, yi+) =

exp
(∑

j yij z′ijγ
)

∑
s∈SJi (yi+) exp

(∑
j sj z′ijγ

) ,
where the sum

∑
s∈SJi (yi+) is extended to all binary vectors s = (s1, . . . , sJi)

with sum equal to yi+

p(yi|Zi, yi+) does not depend anymore on αi and xi (and possibly wi)

S. Bacci (unipg) 31 / 51



Estimation methods Conditional Maximum Likelihood (CML)

`C(β) is simply maximized by a Newton-Raphson algorithm based on the
score vector

uC(γ) =
∑

i

uC,i(γ), uC,i(γ) =
∂ log p(yi|yi+,Zi)

∂γ

and Hessian matrix

HC(γ) =
∑

i

∂2 log p(yi|yi+,Zi)

∂γ∂γ′

The asymptotic variance-covariance matrix may be obtained as

V̂C(γ̂C) = HC(γ̂C)−1SC(γ̂C)HC(γ̂C)−1

SC(γ) =
∑

i uC,i(γ)[uC,i(γ)]′
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Estimation methods Conditional Maximum Likelihood (CML)

With ordinal variables, CML estimation is based on all the possible
dichotomizations of the response variables:

y(l)
ij = I{yij ≥ l}, j = l, . . . ,L− 1,

with y(l)
i = (y(l)

i1 , . . . , y
(l)
iJi

)

The corresponding pseudo log-likelihood function is

`C(γ) =
∑

i

∑
l

log p(y(l)
i |y

(l)
i+,Zi), y(l)

i+ =

J∑
j=1

y(l)
ij ,

that may be maximized by a simple extension of the Newton-Raphson
algorithm implemented for the binary case
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Hausman-type test of misspecification

Hausman-type test of misspecification

The test relies on the traditional Hausman test, which is typically used to
test the assumption of normality of the random effects in linear mixed
models

The traditional Hausman test is based on the comparison of two
estimators (CML and MML) that under the null hypothesis of correct
model specification (H0) are both consistent, but if the model is
misspecified (H1) only one of them remains consistent (CML)

Moreover, it is required that one of the two estimators is asymptotically
efficient under H0 (MML), so as to simplify the estimation of the
variance-covariance matrix of the difference between them
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Hausman-type test of misspecification

In the Hausman-type test here proposed, H0 corresponds to a GLLM for
binary data or for ordinal data, or their extended versions, in which the
distribution of the random effects αi is discrete with k support points

The method is based on the comparison between the MML and the CML
estimators of γ as in Tchetgen and Coull (2006) and Bartolucci et al.
(2014)

The test statistic is defined as

T2 = n(γ̂M − γ̂C)′Ŵ
−1

(γ̂M − γ̂C)

T2 has an asymptotical distribution of type χ2
c under H0, where c is

number of unit-specific covariates in zij

Traditional method to estimate the variance-covariance matrix:

Ŵ = V̂C(γ̂C)− V̂M(γ̂M)
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Hausman-type test of misspecification

Generalized variance-covariance matrix estimator

The traditional formula for Ŵ presents, in the present context, stability
problems with small samples

To avoid instability problems and to avoid to require that one of the two
estimators is efficient , we use a generalized form for the
variance-covariance matrix (Bartolucci et al., 2014), so extending the
original method of Hausman (1978):

Ŵ = n D V̂(θ̂M, γ̂C) D′, D = (E,−I),

with I being the identity matrix of dimension q and E a matrix such that
γ̂M = E θ̂M
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Hausman-type test of misspecification

The joint variance-covariance matrix of γ̂C and θ̂M is obtained by the
generalised sandwich formula

V̂(θ̂M, γ̂C) =

(
HM(θ̂M) 0

0 HC(γ̂C)

)−1

S
(
θ̂M, γ̂C

)(HM(θ̂M) 0
0 HC(γ̂C)

)−1

,

S
(
θ̂M, γ̂C

)
=
∑

i

(
uM,i(θ̂M)

uC,i(γ̂C)

)(
uM,i(θ̂M)′ uC,i(γ̂C)′

)
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Hausman-type test of misspecification

Use of the proposed Hausman-type test

The proposed test may be used:

to investigate about the correct specification of a discrete GLLM

to select the number of mixture components (k), when this number is
unknown

sequential procedure: k is increased until the test does not stop to reject H0

The selection criterion based on T2 is expected to be more parsimonious
with respect to available criteria (i.e., AIC, BIC) provided that the
assumptions about the dependence between the random effects and the
covariates are correctly specified

absolute judgement: for a given k, a sufficiently high p-value leads to
conclude for the correct specification of the model in the complex

The other available criteria to select k only perform relative comparisons
among differently specified models
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Simulation study

Simulation study

The study is based on the GLLM (1) for binary responses and (2) for
ordinal responses

Two scenarios: longitudinal setting (one cluster-specific covariate and
one unit-specific covariate) and IRT setting (Rasch model)

Several discrete distributions with k = 3 for αi: symmetric, symmetric with
shift, and asymmetric

Two possible misspecifications: the true distribution of αi is a normal one;
presence of endogeneity

The proposed test for choosing k is compared with some available
criteria, such as AIC, BIC, and several variants
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Simulation study

Simulation results

If the number of classes is underspecified, the Hausman test rejection
rate considerably increases when the distribution of the random effects is
skewed

If the random effects follow a continuous distribution, the proposed
Hausman test chooses a more parsimonious model in comparison to
standard model selection criteria

The parsimony is greater for large values of units J, which usually leads
to a clearer interpretation of the results, especially when the aim is data
classification or when the interest in on the regression parameters

In the presence of endogeneity, rejection rates are remarkably high, even
in very small samples

the power of the test increases with the correlation and the number of
clusters, while an increasing number of units seems to only slightly affect
the rejection rates
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Applications

Applications

We considered three empirical examples in different fields:

IRT data: the number of support points chosen by BIC is confirmed

multilevel data: a smaller number of support points is chosen with respect to
BIC

longitudinal data: more support points and a different model specification
are chosen with respect to BIC
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Applications Example in IRT (educational NAEP data)

Example in IRT (educational NAEP data)

Data referred to a sample of 1510 examinees who responded to 12
binary items on Mathematics; source: National Assessment of
Educational Progress (NAEP), 1996

The test confirms the choice of k = 3 classes for the Rasch model
suggested by BIC and other criteria:

k = 1 k = 2 k = 3 k = 4 k = 5
Hausman T 414.850 90.071 6.721 2.895 1.639
Hausman p-value 0.000 0.000 0.821 0.992 0.999
AIC 22042.3 20511.4 20364.6 20361.8 20365.0
BIC 22106.2 20585.9 20449.7 20457.6 20471.4
AIC3 22054.3 20525.4 20380.6 20379.8 20385.0
CAIC 22118.2 20599.9 20465.7 20475.6 20491.4
HTAIC 22042.6 20511.7 20365.0 20362.3 20365.6
AICc 22018.5 20483.6 20332.9 20326.2 20325.5
BIC∗ 22068.1 20541.4 20398.9 20400.4 20407.8
CAIC∗ 22080.1 20555.4 20414.9 20418.4 20427.8
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Applications Example in IRT (educational NAEP data)

Intuitively, the explanation is that with k = 3 classes the item estimates by
MML are already very close to those obtained with CML:

MML
CML k = 1 k = 2 k = 3 k = 4 k = 5

Item 1 0.000 0.000 0.000 0.000 0.000 0.000
Item 2 -0.047 -0.038 -0.045 -0.047 -0.047 -0.047
Item 3 0.691 0.549 0.670 0.689 0.691 0.691
Item 4 -1.040 -0.855 -0.984 -1.032 -1.037 -1.040
Item 5 1.521 1.207 1.478 1.518 1.521 1.521
Item 6 0.013 0.010 0.012 0.013 0.013 0.013
Item 7 0.662 0.527 0.642 0.661 0.662 0.662
Item 8 1.191 0.945 1.158 1.189 1.191 1.191
Item 9 0.334 0.267 0.323 0.333 0.334 0.334
Item 10 0.525 0.418 0.508 0.524 0.525 0.525
Item 11 2.427 1.945 2.339 2.418 2.427 2.427
Item 12 2.474 1.984 2.383 2.464 2.474 2.474
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Applications Example in IRT (educational NAEP data)

A traditional Hausman test for the Rasch model based on the assumption
of normality of the distribution of the random effects leads to accept the
null hypothesis of correct model specification (T2 = 10.230, p = 0.510)

However, the normality assumption does not allow us to cluster subjects
in homogeneous classes in an easy way, differently from the discreteness
assumption:

Table : Naep data, Rasch model with k = 3: estimated support points and weights
(standard errors in brackets).

h = 1 h = 2 h = 3
ξ̂h -0.647 (0.138) 0.967 (0.131) 2.430 (0.120)
π̂h 0.164 (–) 0.457 (0.154) 0.379 (0.251)
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Applications Multilevel data (contraceptive use in Bangladesh)

Multilevel data (contraceptive use in Bangladesh)

Data coming from a study in Bangladesh about the knowledge and use of
family planning methods by ever-married women

We considered a subset of 1934 women nested in 60 administrative
districts where the response of interest is a binary variable denoting
whether the interviewed woman is currently using contraceptions

Covariates (5 covariates varying within cluster):

geographical residence area (0= rural, 1=urban)

age

number of children (no child, a single child, two children, three or more
children)
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Applications Multilevel data (contraceptive use in Bangladesh)

The proposed test chooses only 1 support point at 5%, whereas other
criteria select 2 support points:

k = 1 k = 2 k = 3 k = 4
Hausman T 10.160 9.778 5.164 5.163
Hausman p-value 0.071 0.082 0.400 0.396
AIC 2469.1 2427.2 2430.0 2434.0
BIC 2481.7 2444.1 2451.1 2459.4
AIC3 2475.1 2435.2 2440.0 2446.0
CAIC 2487.7 2452.1 2461.1 2471.4
HTAIC 2471.2 2430.8 2435.4 2441.8
AICc 2458.2 2413.4 2413.6 2415.5
BIC∗ 2462.8 2418.9 2419.7 2421.6
CAIC∗ 2468.8 2426.9 2429.7 2433.6
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Applications Longitudinal data (HRS data)

Longitudinal data (HRS data)

Longitudinal data set about Self-Reported Health Status (SRHS) deriving
from the Health and Retirement Study (HRS) about 1308 individuals who
were asked to express opinions on their health status at 4 equally spaced
time occasions, from 2000 to 2006

The response variable (SRHS) is measured on a Likert type scale based
on 5 ordered categories (poor, fair, good, very good, and excellent)

Covariates (2 time-varying covariates):

gender (0=male, 1 = female)

race (0=white, 1=nonwhite)

educational level (3 ordered categories)

age, age2
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Applications Longitudinal data (HRS data)

The proposed test rejects all k for Model-ord1 (constant shift in the cut
points) and for Model-ord2 (free cut points), despite most selection
criteria tend to choose 5 components

The model with normal distributed random-effects is strongly rejected
with T2 = 32.158 and p-value = 0.000

Such results suggest that a possible problem with the data at issue may
be due to the presence of endogeneity

Then, we extend models Model-ord1 and Model-ord2 to account for a
possible effect of age and squared age on the mixture components
weights, as in (5)
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Applications Longitudinal data (HRS data)

Table : Model-ord2 with endogeneity of type (5)

k = 1 k = 2 k = 3 k = 4 k = 5 k = 6 k = 7
T2 75.483 59.454 19.484 22.274 13.767 9.003 5.994
p 0.000 0.000 0.000 0.000 0.001 0.011 0.050
AIC 14879.9 13355.1 12852.8 12636.9 12497.6 12486.4 12457.8
BIC 14948.6 13499.2 13072.5 12932.1 12868.3 12932.6 12979.4
AIC3 14889.9 13376.1 12884.8 12679.9 12551.6 12551.4 12533.8
CAIC 14958.6 13520.2 13104.5 12975.1 12922.3 12997.6 13055.4
HTAIC 14880.0 13355.2 12853.2 12637.5 12498.5 12487.7 12459.5
AICc 14859.9 13313.2 12789.1 12551.4 12390.4 12357.6 12307.4
BIC∗ 14916.8 13432.5 12970.8 12795.4 12696.7 12726.0 12737.9
CAI∗ 14926.8 13453.5 13002.8 12838.4 12750.7 12791.0 12813.9

model Model-ord2 (based on assumption (3)) with endogeneity of type
(5) is not rejected with k = 7

BIC and several other information criteria do not recognize the
misspecification of the model and tend again to choose k = 5 components

the traditional Hausman test recognizes the misspecification of the
model, but does not detect a valid alternative
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Conclusions

Conclusions

The approach is easy to implement and may be used to test the correct
specification of the random-effects distribution and to select the number
of support points

It provides reasonable results on simulated and real data

With respect to most used selection criteria (e.g., BIC), the method is
expected to lead to more parsimonious models (when assumptions hold),
but it may reject all models (with different values of k) of a certain type, so
detecting misspecification problems

The applicability is limited to certain models (based on a canonical link
function), whereas for linear and Poisson models we did not obtain
interesting results; however, the case of binary/ordinal data is very
relevant

An interesting case to try with may be that of survival data
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