Basic Latent Markov model

Silvia Bacci

silvia.bacci@unipg.it
Dipartimento di Economia - Università degli Studi di Perugia (IT)

Outline

(1) Introduction
(2) Univariate formulation
(3) Multivariate formulation

4 Constrained LM models
(5) Application

- Unconstrained basic LM model (LM1)
- Constrained basic LM models

6 Software implementation

Introduction

- Background:

Latent Markov (LM) models (Wiggins, 1973; Bartolucci et al., 2012) are successfully applied in the analysis of longitudinal data: they allow to take into account several aspects, such as serial dependence between observations, measurement errors, unobservable heterogeneity LM models assume that one or more occasion-specific response variables depends only on a discrete latent variable characterized by a given number of latent states which in turn depends on the latent variables corresponding to the previous occasions according to a first-order Markov chain
LM models are characterized by several parameters: the initial probabilities to belong to a given latent state, the transition probabilities from a latent state to another one, the conditional response probabilities given the discrete latent variable

The basic LM model may be seen as
(1) a generalization of a discrete-time Markov chain model to account for measurement errors in the observed variables of interest
(2) a generalization of a latent class (LC) model for longitudinal data, in which each subject may move between latent classes
E.g., in the univariate case

Notation

- Repeated measurements of the same response variable on the same subjects at different occasions
- $\tilde{\boldsymbol{Y}}=\left(Y^{(1)}, \ldots, Y^{(T)}\right)$: vector of values assumed by the categorical response variable Y at time $t(t=1, \ldots, T)$, having c categories
- $U^{(t)}$: latent state at time t with state space $\{1, \ldots, k\}$
- $\boldsymbol{U}=\left(U^{(1)}, \ldots, U^{(T)}\right)$: vector describing the latent process

Main assumptions

- local independence: response variables in $\tilde{\boldsymbol{Y}}$ are conditionally independent given the latent process \boldsymbol{U}, i.e., each occasion-specific observed variable $Y^{(t)}$ is independent of all its previous values $Y^{(t-1)}, \ldots, Y^{(1)}$, given $U^{(t)}$
- latent process \boldsymbol{U} follows a first-order Markov chain with k latent states, i.e., each latent variable $U^{(t)}$ is independent of $U^{(t-2)}, \ldots, U^{(1)}$, given $U^{(t-1)}$

Parameters

- $k(c-1)$ conditional response probabilities

$$
\phi_{y \mid u}^{(t)}=p\left(Y^{(t)}=y \mid U^{(t)}=u\right) \quad t=1, \ldots, T ; u=1, \ldots, k ; y=0, \ldots, c-1
$$

- $(k-1)$ initial probabilities

$$
\pi_{u}=p\left(U^{(1)}=u\right) \quad u=1, \ldots, k
$$

- $(T-1) k(k-1)$ transition probabilities

$$
\pi_{u \mid v}^{(t)}=p\left(U^{(t)}=u \mid U^{(t-1)}=v\right) \quad t=2, \ldots, T ; u, v=1, \ldots, k
$$

- \#par $=k(c-1)+(k-1)+(T-1) k(k-1)$

Probability distributions

- $p(\boldsymbol{U}=\boldsymbol{u})=\pi_{u} \prod_{t=2}^{T} \pi_{u \mid v}^{(t)}=\pi_{u} \cdot \pi_{u_{2} \mid u}^{(2)} \ldots \pi_{u_{T} \mid u_{T-1}}^{(T)}$
- $p(\tilde{\boldsymbol{Y}}=\boldsymbol{y} \mid \boldsymbol{U}=\boldsymbol{u})=\prod_{t=1}^{T} \phi_{y \mid u}^{(t)}=\phi_{y \mid u}^{(1)} \cdot \phi_{y \mid u}^{(2)} \ldots \phi_{y \mid u}^{(T)}$
- manifest distribution of $\tilde{\boldsymbol{Y}}$

$$
\begin{aligned}
p(\tilde{\boldsymbol{Y}}=\boldsymbol{y}) & =\sum_{\boldsymbol{u}} p(\tilde{\boldsymbol{Y}}=\boldsymbol{y}, \boldsymbol{U}=\boldsymbol{u})=\sum_{\boldsymbol{u}} p(\boldsymbol{U}=\boldsymbol{u}) \cdot p(\tilde{\boldsymbol{Y}}=\boldsymbol{y} \mid \boldsymbol{U}=\boldsymbol{u}) \\
& =\sum_{u} \pi_{u} \phi_{y \mid u}^{(1)} \cdot \sum_{u_{2}} \pi_{u_{2} \mid u}^{(2)} \phi_{y \mid u}^{(2)} \ldots \sum_{u_{T}} \pi_{u_{T} \mid u_{T-1}}^{(T)} \phi_{y \mid u}^{(T)} \\
& =\sum_{u} \sum_{u_{2}} \ldots \sum_{u_{T}} \pi_{u} \prod_{t=2}^{T} \pi_{u \mid v}^{(t)} \prod_{t=1}^{T} \phi_{y \mid u}^{(t)}
\end{aligned}
$$

Note that computing $p(\tilde{\boldsymbol{Y}}=\boldsymbol{y})$ involves all the possible k^{T} configurations of vector \boldsymbol{u}

Computing of the manifest distribution: example

- We assume three occasions $(T=3)$ and three latent states $(k=3)$
- We have $3^{3}=27$ possible configurations of vector \boldsymbol{u}
- The manifest distribution of $\tilde{\boldsymbol{Y}}$ is given by:

$$
\begin{aligned}
p(\tilde{\boldsymbol{Y}}=\boldsymbol{y}) & =\pi_{1} \pi_{1 \mid 1}^{(2)} \pi_{1 \mid 1}^{(3)} \phi_{y \mid 1}^{(1)} \phi_{y \mid 1}^{(2)} \phi_{y \mid 1}^{(3)}+ \\
& +\pi_{1} \pi_{1 \mid 1}^{(2)} \pi_{2 \mid 1}^{(3)} \phi_{y \mid 1}^{(1)} \phi_{y \mid 1}^{(2)} \phi_{y \mid 2}^{(3)}+ \\
& +\ldots+ \\
& +\pi_{3} \pi_{3 \mid 3}^{(2)} \pi_{3 \mid 3}^{(3)} \phi_{y \mid 3}^{(1)} \phi_{y \mid 3}^{(2)} \phi_{y \mid 3}^{(3)}
\end{aligned}
$$

Notation

- $\boldsymbol{Y}^{(t)}=\left(Y_{1}^{(t)}, \ldots, Y_{r}^{(t)}\right)$: vector of categorical response variables Y_{j} $(j=1, \ldots, r)$ observed at time $t(t=1, \ldots, T)$, having c_{j} categories
- $\boldsymbol{Y}=\left(\boldsymbol{Y}^{(1)}, \ldots, \boldsymbol{Y}^{(T)}\right)$: vector of observed responses made of the union of vectors $\boldsymbol{Y}^{(t)}$; usually, it is referred to repeated measurements of the same variables $Y_{j}(j=1, \ldots, r)$ on the same individuals at different time points
- $U^{(t)}$: latent state at time t with state space $\{1, \ldots, k\}$
- $\boldsymbol{U}=\left(U^{(1)}, \ldots, U^{(T)}\right)$: vector describing the latent process

Main assumptions

- Local independence: vectors $\boldsymbol{Y}^{(t)}(t=1, \ldots, T)$ are conditionally independent given the latent process \boldsymbol{U} and the response variables in each $\boldsymbol{Y}^{(t)}$ are conditionally independent given $U^{(t)}$, i.e., each occasion-specific observed variable $Y_{j}^{(t)}$ is independent of $Y_{j}^{(t-1)}, \ldots, Y_{j}^{(1)}$ and of each $Y_{h}^{(t)}$, for all $h \neq j=1, \ldots, r$, given $U^{(t)}$
- latent process \boldsymbol{U} follows a first-order Markov chain with k latent states, i.e., each latent variable $U^{(t)}$ is independent of $U^{(t-2)}, \ldots, U^{(1)}$, given $U^{(t-1)}$

Parameters

- $k \sum_{j=1}^{r}\left(c_{j}-1\right)$ conditional response probabilities
$\phi_{j y \mid u}^{(t)}=p\left(Y_{j}^{(t)}=y \mid U^{(t)}=u\right) \quad j=1, \ldots, r ; t=1, \ldots, T ; u=1, \ldots, k ; y=$
$0, \ldots, c_{j}-1$ $\phi_{\mathbf{y} \mid u}^{(t)}=\prod_{j=1}^{r} \phi_{j y \mid u}^{(t)}=p\left(Y_{1}^{(t)}=y_{1}, \ldots, Y_{r}^{(t)}=y_{r} \mid U^{(t)}=u\right)$
- $(k-1)$ initial probabilities

$$
\pi_{u}=p\left(U^{(1)}=u\right) \quad u=1, \ldots, k
$$

- $(T-1) k(k-1)$ transition probabilities

$$
\pi_{u \mid v}^{(t)}=p\left(U^{(t)}=u \mid U^{(t-1)}=v\right) \quad t=2, \ldots, T ; u, v=1, \ldots, k
$$

- \#par $=k \sum_{j=1}^{r}\left(c_{j}-1\right)+(k-1)+(T-1) k(k-1)$

Probability distributions

- $p(\boldsymbol{U}=\boldsymbol{u})=\pi_{u} \prod_{t=2}^{T} \pi_{u \mid v}^{(t)}=\pi_{u} \cdot \pi_{u_{2} \mid u}^{(2)} \ldots \pi_{u_{T} \mid u_{T-1}}^{(T)}$
- $p(\boldsymbol{Y}=\boldsymbol{y} \mid \boldsymbol{U}=\boldsymbol{u})=\prod_{t=1}^{T} \phi_{\boldsymbol{y} \mid u}^{(t)}=\phi_{\boldsymbol{y} \mid u}^{(1)} \cdot \phi_{\boldsymbol{y} \mid u}^{(2)} \ldots \phi_{\boldsymbol{y} \mid u}^{(T)}$
- Manifest distribution of \boldsymbol{Y}

$$
\begin{aligned}
p(\boldsymbol{Y}=\boldsymbol{y}) & =\sum_{\boldsymbol{u}} p(\boldsymbol{Y}=\boldsymbol{y}, \boldsymbol{U}=\boldsymbol{u})=\sum_{\boldsymbol{u}} p(\boldsymbol{U}=\boldsymbol{u}) \cdot p(\boldsymbol{Y}=\boldsymbol{y} \mid \boldsymbol{U}=\boldsymbol{u}) \\
& =\sum_{u} \pi_{u} \phi_{\boldsymbol{y} \mid u}^{(1)} \cdot \sum_{u_{2}} \pi_{u_{2} \mid u}^{(2)} \phi_{\boldsymbol{y} \mid u}^{(2)} \ldots \sum_{u_{T}} \pi_{u_{T} \mid u_{T-1}}^{(T)} \phi_{\boldsymbol{y} \mid u}^{(T)} \\
& =\sum_{u} \sum_{u_{2}} \cdots \sum_{u_{T}} \pi_{u} \prod_{t=2}^{T} \pi_{u \mid v}^{(t)} \prod_{t=1}^{T} \phi_{\boldsymbol{y} \mid u}^{(t)}
\end{aligned}
$$

Maximum likelihood (ML) estimation

- Log-likelihood of the model

$$
\ell(\boldsymbol{\theta})=\sum_{\boldsymbol{y}} n_{(\boldsymbol{y})} \log [p(\boldsymbol{Y}=\boldsymbol{y})]
$$

- $\boldsymbol{\theta}$: vector of all model parameters $\left(\pi_{u}, \pi_{u \mid v}^{(t)}, \phi_{j y \mid u}^{(t)}\right)$
- $n_{(y)}$: frequency of the response configuration y in the sample
- $\ell(\boldsymbol{\theta})$ may be maximized with respect to $\boldsymbol{\theta}$ by an ExpectationMaximization (EM) algorithm (Dempster et al., 1977)

EM algorithm

Complete data log-likelihood of the model

$$
\begin{aligned}
\ell^{*}(\boldsymbol{\theta}) & =\sum_{j=1}^{r} \sum_{t=1}^{T} \sum_{u=1}^{k} \sum_{y=0}^{c-1} a_{j u y}^{(t)} \log \phi_{j y \mid u}^{(t)}+ \\
& +\sum_{u=1}^{k} b_{u}^{(1)} \log \pi_{u}+\sum_{t=2}^{T} \sum_{v=1}^{k} \sum_{u=1}^{k} b_{v u}^{(t)} \log \pi_{u \mid v}^{(t)}
\end{aligned}
$$

- $a_{j u y}^{(t)}$: frequency of subjects responding by y for the j-th response variable and belonging to latent state u, at time t
- $b_{u}^{(1)}$: frequency of subjects in latent state u at time 1
- $b_{v u}^{(t)}$: frequency of subjects which move from latent state v to u at time t

EM algorithm

- The algorithm alternates two steps until convergence in $\ell(\boldsymbol{\theta})$:

E: compute the expected values of frequencies $a_{j u y}^{(t)}, b_{u}^{(1)}$, and $b_{v u}^{(t)}$, given the observed data and the current value of $\boldsymbol{\theta}$, so as to obtain the expected value of $\ell^{*}(\boldsymbol{\theta})$
\mathbf{M} : update $\boldsymbol{\theta}$ by maximizing the expected value of $\ell^{*}(\boldsymbol{\theta})$ obtained above; explicit solutions for $\boldsymbol{\theta}$ estimations are available

- The E-step is performed by means of certain recursions

Forward and backward recursions

To efficiently compute the probability $p(\boldsymbol{Y}=\boldsymbol{y})$ and, then, the posterior probabilities $f_{u \mid y}^{(t)}$ and $f_{u \mid v, y}^{(t)}$ we can use forward and backward recursions for obtaining the following intermediate quantities

- Forward recursions

$$
q_{u, \boldsymbol{y}}^{(t)}=p\left(U^{(t)}=u, \boldsymbol{Y}^{(1)}, \ldots, \boldsymbol{Y}^{(t)}\right)=\sum_{v=1}^{k} q_{v, \boldsymbol{y}}^{(t-1)} \pi_{u \mid v}^{(t)} \phi_{\boldsymbol{y} \mid u}^{(t)} \quad u=1, \ldots, k
$$

starting with $q_{u, \boldsymbol{y}}^{(1)}=\pi_{u} \phi_{\boldsymbol{y} \mid u}^{(1)}$

- Backward recursions

$$
\bar{q}_{v, \boldsymbol{y}}^{(t)}=p\left(\boldsymbol{Y}^{(t+1)}, \ldots, \boldsymbol{Y}^{(T)} \mid U^{(t)}=v\right)=\sum_{u=1}^{k} \bar{q}_{u, \boldsymbol{y}}^{(t+1)} \pi_{u \mid v}^{(t+1)} \phi_{\boldsymbol{y} \mid u}^{(t+1)} \quad v=1, \ldots, k
$$

starting with $\bar{q}_{v, y}^{(T)}=1$

Variants of basic LM model

- LM model with covariates: An LM model may be generalized in a similar way to the basic LC model introducing individual covariates
- Constrained LM model: Several interesting constraints may be introduced in an LM model to reduce the number of parameters and to make easier the interpretation of results
- constraints on the conditional distribution
- constraints on the transition probabilities
- In what follows we describe some of the most interesting constraints on the transition probabilities

Constraints on $\Pi^{(t)}$

- We denote by $\Pi^{(t)}=\left\{\pi_{u \mid \nu}^{(t)}\right\}$ the matrix of transition probabilities
- Linear constraint: $\rho_{v}^{(t)}=Z_{v}^{(t)} \delta$, with $\rho_{v}^{(t)}$ denoting a column vector containing the off-diagonal elements of the v-th row of $\Pi^{(t)}$
- More in general, a GLM may be imposed on the transition probabilities $\boldsymbol{\lambda}_{v}^{(t)}=\mathbf{Z}_{v}^{(t)} \delta$, with $\boldsymbol{\lambda}_{v}^{(t)}=g\left(\boldsymbol{\pi}_{v}^{(t)}\right)$; e.g., $g(\cdot)$ may be a logit link function, so that the generic element of $\boldsymbol{\lambda}_{v}^{(t)}$ is $\lambda_{u \mid v}^{(t)}=\log \frac{\pi_{u \mid t}^{(t)}}{\pi_{v \mid v}^{(t)}} ; u=1, \ldots, k, u \neq v$

Examples of constraints on $\boldsymbol{\Pi}^{(t)}$

C1 Time-homogeneous Markov-chain: $\boldsymbol{\Pi}^{(t)}=\boldsymbol{\Pi}$
\rightarrow Transition probability from state v to state u is independent of the occasion t

C2 All the off-diagonal transition probabilities are equal to each other

$$
\boldsymbol{\Pi}^{(t)}=\left(\begin{array}{ccc}
1-2 \pi^{(t)} & \pi^{(t)} & \pi^{(t)} \\
\pi^{(t)} & 1-2 \pi^{(t)} & \pi^{(t)} \\
\pi^{(t)} & \pi^{(t)} & 1-2 \pi^{(t)}
\end{array}\right), \quad t=2, \ldots, T
$$

C3 Symmetric transition matrix: transition probability from state v to state u is the same as the reverse transition

$$
\boldsymbol{\Pi}^{(t)}=\left(\begin{array}{ccc}
1-\left(\pi_{2 \mid 1}^{(t)}+\pi_{3 \mid 1}^{(t)}\right) & \pi_{2 \mid 1}^{(t)} & \pi_{3 \mid 1}^{(t)} \\
\pi_{2 \mid 1}^{(t)} & 1-\left(\pi_{2 \mid 1}^{(t)}+\pi_{3 \mid 2}^{(t)}\right) & \pi_{3 \mid 2}^{(t)} \\
\pi_{3 \mid 1}^{(t)} & \pi_{3 \mid 2}^{(t)} & 1-\left(\pi_{3 \mid 1}^{(t)}+\pi_{3 \mid 2}^{(t)}\right)
\end{array}\right),
$$

C4 Upper-triangular transition matrix: a subject in state v may move only in state $u=v+1, \ldots, k$

$$
\boldsymbol{\Pi}^{(t)}=\left(\begin{array}{ccc}
\pi_{1 \mid 1}^{(t)} & \pi_{2 \mid 1}^{(t)} & \pi_{3 \mid 1}^{(t)} \\
0 & \pi_{2 \mid 2}^{(t)} & \pi_{3 \mid 2}^{(t)} \\
0 & 0 & 1
\end{array}\right), \quad t=2, \ldots, T
$$

C5 Tridiagonal transition matrix: transition from state v is only allowed to state $u=v-1, v+1$

$$
\boldsymbol{\Pi}^{(t)}=\left(\begin{array}{cccc}
\pi_{1 \mid 1}^{(t)} & \pi_{2 \mid 1}^{(t)} & 0 & 0 \\
\pi_{1 \mid 2}^{(t)} & \pi_{2 \mid 2}^{(t)} & \pi_{3 \mid 2}^{(t)} & 0 \\
0 & \pi_{2 \mid 3}^{(t)} & \pi_{3 \mid 3}^{(t)} & \pi_{4 \mid 3}^{(t)} \\
0 & 0 & \pi_{3 \mid 4}^{(t)} & \pi_{4 \mid 4}^{(t)}
\end{array}\right), \quad t=2, \ldots, T
$$

C6 Basic LC model: transition from state v to state u equals 0 , for all $v \neq u$

$$
\boldsymbol{\Pi}^{(t)}=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right), \quad t=2, \ldots, T
$$

Model selection

- Given the number k of latent states, it is convenient to sequentially introduce the constraints on $\Pi^{(t)}$ and retain the constraint that, at each attempt, leads to a reduction of the BIC index
- Also an LR test is possible, based on the test statistic

$$
L R=-2\left(\hat{\ell}_{0}-\hat{\ell}_{1}\right)
$$

- $\hat{\ell}_{1}$: maximum log-likelihood value of the unconstrained model
- $\hat{\ell}_{0}$: maximum log-likelihood value of the constrained model
- What's about the distribution of LR statistic?
- when the usual regularity conditions hold (e.g., case C1), LR statistic has a chi-square distribution with a number of degrees of freedom equal to the number of free parameters
- in presence of constraints on the boundary space (e.g., cases C4 and C5), LR statistic has a chi-bar-squared distribution (i.e., a mixture of chi-squared distributions)

Analysis of marijuana consumption

- We again consider the dataset about marijuana consumption, assuming that individuals may move from one state to another one during the time
- We first estimate an unconstrained basic LM model, characterised by a completely general transition matrix $\boldsymbol{\Pi}^{(t)}$ (model LM1)
- Then, we estimate some more realistic constrained LM models, characterised by
- a time-homogeneous transition matrix Π (constraint C1; model LM2)
- a time-homogeneous and tridiagonal transition matrix Π (constraints C1 and C5; model LM3)
- a time-homogeneous and upper-triangular transition matrix Π (constraints C1 and C4; model LM4)
- Note that LM2 is nested in LM1, LM3 is nested in LM2, and LM4 is nested in LM2; LM3 and LM4 are not nested

Unconstrained basic LM model (LM1)

Table : Estimates of conditional response probabilities, $\hat{\phi}_{y \mid u}$

	$y=0$	$y=1$	$y=2$
$u=1$	0.996	0.000	0.004
$u=2$	0.305	0.687	0.008
$u=3$	0.012	0.083	0.905

- Results are coherent with those obtained by the LC model (Lecture 1, Example 1): state 1 corresponds to the lowest tendency of marijuana consumption, state 2 to an intermediate tendency, and state 3 to the highest tendency
- Note that the results outline the presence of measurement errors, as some off-diagonal values differ from 0

Table : Estimates of initial, $\hat{\pi}_{u}$, and transition probabilities, $\hat{\pi}_{u \mid v}^{(t)}$

		$u=1$	$u=2$	$u=3$
$t=1$		0.898	0.083	0.019
$t=2$	$v=1$	0.831	0.154	0.015
	$v=2$	0.318	0.228	0.454
	$v=3$	0.057	0.000	0.943
$t=3$	$v=1$	0.810	0.190	0.000
	$v=2$	0.056	0.482	0.461
	$v=3$	0.000	0.147	0.853
$t=4$	$v=1$	0.908	0.064	0.028
	$v=2$	0.059	0.718	0.224
	$v=3$	0.000	0.186	0.814
$t=5$	$v=1$	0.789	0.163	0.048
	$v=2$	0.099	0.821	0.080
	$v=3$	0.020	0.035	0.945

- Individuals tend to be in state 1 (low tendency to marijuana consumption) at the beginning of the study $(t=1)$
- However, the completely general transition matrices $\Pi^{(t)}$ are not easy to be interpreted
- In order to have information about the time trend of the tendency of marijuana consumption, we may
- calculating the marginal distribution of latent states for each time occasion
- constraining the transition matrices in order to reduce the number of parameters

Table : Estimated marginal probabilities of latent states, $p\left(U_{i}^{(t)}=u\right), u=1, \ldots, 5$

	$u=1$	$u=2$	$u=3$
$t=1$	0.8980	0.0835	0.0185
$t=2$	0.7736	0.1576	0.0688
$t=3$	0.6355	0.2331	0.1314
$t=4$	0.5905	0.2325	0.1770
$t=5$	0.4924	0.2933	0.2143

- We observe that the tendency to stay in state 1 (low marijuana consumption) decreases with the age
- The tendency to consume marijuana (states 2 and 3) increases with the age

Constrained basic LM model (LM1)

Table : Estimates of conditional response probabilities, $\hat{\phi}_{y \mid u}$

	$y=0$	$y=1$	$y=2$
$u=1$	0.996	0.000	0.004
$u=2$	0.305	0.687	0.008
$u=3$	0.012	0.083	0.905

- Results are coherent with those obtained by the LC model (Lecture 1, Example 1): state 1 corresponds to the lowest tendency of marijuana consumption, state 2 to an intermediate tendency, and state 3 to the highest tendency
- Note that the results outline the presence of measurement errors, as some off-diagonal values differ from 0

Time-homogeneous LM model (LM2)

Table : Estimates of initial, $\hat{\pi}_{u}$, and transition probabilities, $\hat{\pi}_{u \mid v}^{(t)}$

		$u=1$	$u=2$	$u=3$
$t=1$		0.912	0.071	0.017
$t=2, \ldots, 5$	$v=1$	0.842	0.141	0.017
	$v=2$	0.080	0.670	0.250
	$v=3$	0.000	0.132	0.868

- High persistency in each latent state, but also a given tendency to move to adjacent states

Time-homogeneous LM model with tridiagonal transition matrix (LM3)

Table : Estimates of initial, $\hat{\pi}_{u}$, and transition probabilities, $\hat{\pi}_{u \mid v}^{(t)}$

		$u=1$	$u=2$	$u=3$
$t=1$		0.896	0.089	0.015
$t=2, \ldots, 5$	$v=1$	0.835	0.165	0.000
	$v=2$	0.070	0.686	0.244
	$v=3$	0.000	0.082	0.918

- High persistency in each latent state, but also a given tendency to move to higher adjacent states

Model selection

Table : Model selection for $k=3$: maximum log-likelihood value, number of parameters, and BIC index

Model	$\hat{\ell}$	\# par	BIC
LC	-658.238	32	1491.454
LM1	-646.895	32	1468.768
LM2	-658.593	14	1393.738
LM3	-660.600	12	1375.890
LM4	-661.930	11	1373.070

R package LMest

- This package includes a set of functions to fit LM models in the basic version and in the extended version with individual covariates
- The main function for the model estimation is est_lm_basic

- Data structure

> data(data_drug)
> data_drug = as.matrix(data_drug)
> head(data_drug)
> S=data_drug[,1:5]-1 \# matrix of item responses
> yv=data_drug[,6] \# vector of weights
$>\mathrm{k}=3$ \# number of latent states

- Model estimation
> \# Basic unconstrained LM model
$>$ LM1 $=$ est_lm_basic (S,yv,k,mod=0)
> \# Time-homogeneous LM model
> LM2 $=$ est_lm_basic (S,yv,k,mod=1)
- Output
> LM1\$piv \# latent states initial probabilities
> LM1\$Pi \# transition probabilities
> LM1\$Psi \# conditional response probabilities
> \# Marginal probabilities
> marg_prob_2 = colSums(LM1\$Pi[,,2]*LM1\$piv)
> marg_prob_3 = colSums (LM1\$Pi[,,3]*marg_prob_2)
> marg_prob_4 = colSums(LM1\$Pi[,,4]*marg_prob_3)
> marg_prob_5 = colSums(LM1\$Pi[,,5]*marg_prob_4)
> round(rbind(LM1\$piv, marg_prob_2, marg_prob_3, marg_prob_4, marg_prob_5), 4)

Main references

- Bartolucci F., Farcomeni A., Pennoni F. (2012), Latent Markov Models for Longitudinal Data, Chapman \& Hall/CRC
- Wiggins, L. (1973), Panel Analysis: Latent probability models for attitude and behaviours processes, Elsevier, Amsterdam
- Zucchini, W., MacDonald, I. L. (2009) Hidden Markov Models for Time Series: an Introduction using R. New York: Springer

