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Introduction

Introduction

Background:
Latent Markov (LM) models (Wiggins, 1973; Bartolucci et al., 2012) are
successfully applied in the analysis of longitudinal data: they allow to take
into account several aspects, such as serial dependence between
observations, measurement errors, unobservable heterogeneity
LM models assume that one or more occasion-specific response
variables depends only on a discrete latent variable characterized by a
given number of latent states which in turn depends on the latent
variables corresponding to the previous occasions according to a
first-order Markov chain
LM models are characterized by several parameters: the initial
probabilities to belong to a given latent state, the transition probabilities
from a latent state to another one, the conditional response probabilities
given the discrete latent variable
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Introduction

The basic LM model may be seen as

1 a generalization of a discrete-time Markov chain model to account for
measurement errors in the observed variables of interest

2 a generalization of a latent class (LC) model for longitudinal data, in
which each subject may move between latent classes

E.g., in the univariate case
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Univariate formulation

Notation

Repeated measurements of the same response variable on the same
subjects at different occasions
Ỹ = (Y(1), . . . ,Y(T)): vector of values assumed by the categorical
response variable Y at time t (t = 1, . . . ,T), having c categories

U(t): latent state at time t with state space {1, . . . , k}

U = (U(1), . . . ,U(T)): vector describing the latent process
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Univariate formulation

Main assumptions

local independence: response variables in Ỹ are conditionally
independent given the latent process U, i.e.,
each occasion-specific observed variable Y(t) is independent of all its
previous values Y(t−1), . . . ,Y(1), given U(t)

latent process U follows a first-order Markov chain with k latent states,
i.e.,
each latent variable U(t) is independent of U(t−2), . . . ,U(1), given U(t−1)
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Univariate formulation

Parameters

k(c− 1) conditional response probabilities

φ
(t)
y|u = p(Y(t) = y|U(t) = u) t = 1, . . . ,T; u = 1, . . . , k; y = 0, . . . , c− 1

(k − 1) initial probabilities

πu = p(U(1) = u) u = 1, . . . , k

(T − 1)k(k − 1) transition probabilities

π
(t)
u|v = p(U(t) = u|U(t−1) = v) t = 2, . . . ,T; u, v = 1, . . . , k

#par = k(c− 1) + (k − 1) + (T − 1)k(k − 1)
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Univariate formulation

Probability distributions

p(U = u) = πu
∏T

t=2 π
(t)
u|v = πu · π(2)

u2|u . . . π
(T)
uT |uT−1

p(Ỹ = y|U = u) =
∏T

t=1 φ
(t)
y|u = φ

(1)
y|u · φ

(2)
y|u . . . φ

(T)
y|u

manifest distribution of Ỹ

p(Ỹ = y) =
∑
u

p(Ỹ = y,U = u) =
∑
u

p(U = u) · p(Ỹ = y|U = u)

=
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Note that computing p(Ỹ = y) involves all the possible kT configurations of
vector u
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Univariate formulation

Computing of the manifest distribution: example

We assume three occasions (T = 3) and three latent states (k = 3)
We have 33 = 27 possible configurations of vector u
The manifest distribution of Ỹ is given by:

p(Ỹ = y) = π1π
(2)
1|1π

(3)
1|1φ

(1)
y|1φ

(2)
y|1φ

(3)
y|1 +

+ π1π
(2)
1|1π

(3)
2|1φ

(1)
y|1φ

(2)
y|1φ

(3)
y|2 +

+ . . .+

+ π3π
(2)
3|3π

(3)
3|3φ

(1)
y|3φ

(2)
y|3φ

(3)
y|3
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Multivariate formulation

Notation

Y(t) = (Y(t)
1 , . . . ,Y(t)

r ): vector of categorical response variables Yj

(j = 1, . . . , r) observed at time t (t = 1, . . . ,T), having cj categories

Y = (Y(1), . . . ,Y(T)): vector of observed responses made of the union of
vectors Y(t); usually, it is referred to repeated measurements of the same
variables Yj (j = 1, . . . , r) on the same individuals at different time points

U(t): latent state at time t with state space {1, . . . , k}

U = (U(1), . . . ,U(T)): vector describing the latent process
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Multivariate formulation

Main assumptions

Local independence: vectors Y(t) (t = 1, . . . ,T) are conditionally
independent given the latent process U and the response variables in
each Y(t) are conditionally independent given U(t), i.e.,

each occasion-specific observed variable Y(t)
j is independent of

Y(t−1)
j , . . . ,Y(1)

j and of each Y(t)
h , for all h 6= j = 1, . . . , r, given U(t)

latent process U follows a first-order Markov chain with k latent states,
i.e.,
each latent variable U(t) is independent of U(t−2), . . . ,U(1), given U(t−1)
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Multivariate formulation

Univariate LM:
Y(1) Y(2)
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Multivariate formulation

Parameters

k
∑r

j=1(cj − 1) conditional response probabilities

φ
(t)
jy|u = p(Y(t)

j = y|U(t) = u) j = 1, . . . , r; t = 1, . . . ,T; u = 1, . . . , k; y =
0, . . . , cj − 1

φ
(t)
y|u =

∏r
j=1 φ

(t)
jy|u = p(Y(t)

1 = y1, . . . ,Y
(t)
r = yr|U(t) = u)

(k − 1) initial probabilities

πu = p(U(1) = u) u = 1, . . . , k

(T − 1)k(k − 1) transition probabilities

π
(t)
u|v = p(U(t) = u|U(t−1) = v) t = 2, . . . ,T; u, v = 1, . . . , k

#par = k
∑r

j=1(cj − 1) + (k − 1) + (T − 1)k(k − 1)
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Multivariate formulation

Probability distributions

p(U = u) = πu
∏T

t=2 π
(t)
u|v = πu · π(2)

u2|u . . . π
(T)
uT |uT−1

p(Y = y|U = u) =
∏T

t=1 φ
(t)
y|u = φ

(1)
y|u · φ

(2)
y|u . . . φ

(T)
y|u

Manifest distribution of Y

p(Y = y) =
∑
u

p(Y = y,U = u) =
∑
u

p(U = u) · p(Y = y|U = u)

=
∑
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πuφ
(1)
y|u ·

∑
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π
(2)
u2|uφ
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Multivariate formulation

Maximum likelihood (ML) estimation

Log-likelihood of the model

`(θ) =
∑

y
n(y) log[p(Y = y)]

θ: vector of all model parameters (πu, π
(t)
u|v, φ

(t)
jy|u)

n(y): frequency of the response configuration y in the sample

`(θ) may be maximized with respect to θ by an Expectation-
Maximization (EM) algorithm (Dempster et al., 1977)
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Multivariate formulation

EM algorithm

Complete data log-likelihood of the model

`∗(θ) =

r∑
j=1

T∑
t=1

k∑
u=1

c−1∑
y=0

a(t)
juy logφ(t)

jy|u+

+

k∑
u=1

b(1)
u logπu +

T∑
t=2

k∑
v=1

k∑
u=1

b(t)
vu logπ(t)

u|v

a(t)
juy: frequency of subjects responding by y for the j-th response variable

and belonging to latent state u, at time t

b(1)
u : frequency of subjects in latent state u at time 1

b(t)
vu : frequency of subjects which move from latent state v to u at time t
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Multivariate formulation

EM algorithm

The algorithm alternates two steps until convergence in `(θ):

E: compute the expected values of frequencies a(t)
juy, b(1)

u , and b(t)
vu , given the

observed data and the current value of θ, so as to obtain the expected value
of `∗(θ)

M: update θ by maximizing the expected value of `∗(θ) obtained above; explicit
solutions for θ estimations are available

The E-step is performed by means of certain recursions
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Multivariate formulation

Forward and backward recursions
To efficiently compute the probability p(Y = y) and, then, the posterior
probabilities f (t)

u|y and f (t)
u|v,y we can use forward and backward recursions for

obtaining the following intermediate quantities

Forward recursions

q(t)
u,y = p(U(t) = u,Y(1), . . . ,Y(t)) =

k∑
v=1

q(t−1)
v,y π

(t)
u|vφ

(t)
y|u u = 1, . . . , k

starting with q(1)
u,y = πuφ

(1)
y|u

Backward recursions

q̄(t)
v,y = p(Y(t+1), . . . ,Y(T)|U(t) = v) =

k∑
u=1

q̄(t+1)
u,y π

(t+1)
u|v φ

(t+1)
y|u v = 1, . . . , k

starting with q̄(T)
v,y = 1
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Constrained LM models

Variants of basic LM model

LM model with covariates: An LM model may be generalized in a similar
way to the basic LC model introducing individual covariates

Constrained LM model: Several interesting constraints may be introduced
in an LM model to reduce the number of parameters and to make easier
the interpretation of results

constraints on the conditional distribution
constraints on the transition probabilities

In what follows we describe some of the most interesting constraints on
the transition probabilities
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Constrained LM models

Constraints on Π(t)

We denote by Π(t) = {π(t)
u|v} the matrix of transition probabilities

Linear constraint: ρ(t)
v = Z(t)

v δ, with ρ
(t)
v denoting a column vector

containing the off-diagonal elements of the v-th row of Π(t)

More in general, a GLM may be imposed on the transition probabilities
λ(t)

v = Z(t)
v δ, with λ(t)

v = g(π
(t)
v ); e.g., g(·) may be a logit link function, so

that the generic element of λ(t)
v is λ(t)

u|v = log
π
(t)
u|v

π
(t)
v|v

; u = 1, . . . , k, u 6= v
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Constrained LM models

Examples of constraints on Π(t)

C1 Time-homogeneous Markov-chain: Π(t) = Π

→ Transition probability from state v to state u is independent of
the occasion t

C2 All the off-diagonal transition probabilities are equal to each
other

Π(t) =


1− 2π(t) π(t) π(t)

π(t) 1− 2π(t) π(t)

π(t) π(t) 1− 2π(t)

 , t = 2, . . . ,T
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Constrained LM models

C3 Symmetric transition matrix: transition probability from state v to
state u is the same as the reverse transition

Π(t) =


1− (π

(t)
2|1 + π

(t)
3|1) π

(t)
2|1 π

(t)
3|1

π
(t)
2|1 1− (π

(t)
2|1 + π

(t)
3|2) π

(t)
3|2

π
(t)
3|1 π

(t)
3|2 1− (π

(t)
3|1 + π

(t)
3|2)

 , t = 2, . . . ,T

C4 Upper-triangular transition matrix: a subject in state v may move
only in state u = v + 1, . . . , k

Π(t) =


π
(t)
1|1 π

(t)
2|1 π

(t)
3|1

0 π
(t)
2|2 π

(t)
3|2

0 0 1

 , t = 2, . . . ,T
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Constrained LM models

C5 Tridiagonal transition matrix: transition from state v is only
allowed to state u = v− 1, v + 1

Π(t) =


π
(t)
1|1 π

(t)
2|1 0 0

π
(t)
1|2 π

(t)
2|2 π

(t)
3|2 0

0 π
(t)
2|3 π

(t)
3|3 π

(t)
4|3

0 0 π
(t)
3|4 π

(t)
4|4

 , t = 2, . . . ,T

C6 Basic LC model: transition from state v to state u equals 0, for
all v 6= u

Π(t) =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 , t = 2, . . . ,T
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Constrained LM models

Model selection

Given the number k of latent states, it is convenient to sequentially
introduce the constraints on Π(t) and retain the constraint that, at each
attempt, leads to a reduction of the BIC index

Also an LR test is possible, based on the test statistic

LR = −2(ˆ̀0 − ˆ̀1)

ˆ̀1: maximum log-likelihood value of the unconstrained model
ˆ̀0: maximum log-likelihood value of the constrained model

What’s about the distribution of LR statistic?
when the usual regularity conditions hold (e.g., case C1), LR statistic has a
chi-square distribution with a number of degrees of freedom equal to the
number of free parameters
in presence of constraints on the boundary space (e.g., cases C4 and C5),
LR statistic has a chi-bar-squared distribution (i.e., a mixture of chi-squared
distributions)
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Application

Analysis of marijuana consumption

We again consider the dataset about marijuana consumption, assuming
that individuals may move from one state to another one during the time

We first estimate an unconstrained basic LM model, characterised by a
completely general transition matrix Π(t) (model LM1)

Then, we estimate some more realistic constrained LM models,
characterised by

a time-homogeneous transition matrix Π (constraint C1; model LM2)
a time-homogeneous and tridiagonal transition matrix Π (constraints C1 and
C5; model LM3)
a time-homogeneous and upper-triangular transition matrix Π (constraints
C1 and C4; model LM4)

Note that LM2 is nested in LM1, LM3 is nested in LM2, and LM4 is
nested in LM2; LM3 and LM4 are not nested
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Application Unconstrained basic LM model (LM1)

Unconstrained basic LM model (LM1)

Table : Estimates of conditional response probabilities, φ̂y|u

y = 0 y = 1 y = 2
u = 1 0.996 0.000 0.004
u = 2 0.305 0.687 0.008
u = 3 0.012 0.083 0.905

Results are coherent with those obtained by the LC model (Lecture 1,
Example 1): state 1 corresponds to the lowest tendency of marijuana
consumption, state 2 to an intermediate tendency, and state 3 to the
highest tendency

Note that the results outline the presence of measurement errors, as
some off-diagonal values differ from 0
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Application Unconstrained basic LM model (LM1)

Table : Estimates of initial, π̂u, and transition probabilities, π̂(t)
u|v

u = 1 u = 2 u = 3
t = 1 0.898 0.083 0.019
t = 2 v = 1 0.831 0.154 0.015

v = 2 0.318 0.228 0.454
v = 3 0.057 0.000 0.943

t = 3 v = 1 0.810 0.190 0.000
v = 2 0.056 0.482 0.461
v = 3 0.000 0.147 0.853

t = 4 v = 1 0.908 0.064 0.028
v = 2 0.059 0.718 0.224
v = 3 0.000 0.186 0.814

t = 5 v = 1 0.789 0.163 0.048
v = 2 0.099 0.821 0.080
v = 3 0.020 0.035 0.945
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Application Unconstrained basic LM model (LM1)

Individuals tend to be in state 1 (low tendency to marijuana consumption)
at the beginning of the study (t = 1)

However, the completely general transition matrices Π(t) are not easy to
be interpreted

In order to have information about the time trend of the tendency of
marijuana consumption, we may

calculating the marginal distribution of latent states for each time occasion

constraining the transition matrices in order to reduce the number of
parameters
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Application Unconstrained basic LM model (LM1)

Table : Estimated marginal probabilities of latent states, ˆp(U(t)
i = u), u = 1, . . . , 5

u = 1 u = 2 u = 3
t = 1 0.8980 0.0835 0.0185
t = 2 0.7736 0.1576 0.0688
t = 3 0.6355 0.2331 0.1314
t = 4 0.5905 0.2325 0.1770
t = 5 0.4924 0.2933 0.2143

We observe that the tendency to stay in state 1 (low marijuana
consumption) decreases with the age

The tendency to consume marijuana (states 2 and 3) increases with the
age
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Application Constrained basic LM models

Constrained basic LM model (LM1)

Table : Estimates of conditional response probabilities, φ̂y|u

y = 0 y = 1 y = 2
u = 1 0.996 0.000 0.004
u = 2 0.305 0.687 0.008
u = 3 0.012 0.083 0.905

Results are coherent with those obtained by the LC model (Lecture 1,
Example 1): state 1 corresponds to the lowest tendency of marijuana
consumption, state 2 to an intermediate tendency, and state 3 to the
highest tendency

Note that the results outline the presence of measurement errors, as
some off-diagonal values differ from 0
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Application Constrained basic LM models

Time-homogeneous LM model (LM2)

Table : Estimates of initial, π̂u, and transition probabilities, π̂(t)
u|v

u = 1 u = 2 u = 3
t = 1 0.912 0.071 0.017
t = 2, . . . , 5 v = 1 0.842 0.141 0.017

v = 2 0.080 0.670 0.250
v = 3 0.000 0.132 0.868

High persistency in each latent state, but also a given tendency to move
to adjacent states
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Application Constrained basic LM models

Time-homogeneous LM model with tridiagonal
transition matrix (LM3)

Table : Estimates of initial, π̂u, and transition probabilities, π̂(t)
u|v

u = 1 u = 2 u = 3
t = 1 0.896 0.089 0.015
t = 2, . . . , 5 v = 1 0.835 0.165 0.000

v = 2 0.070 0.686 0.244
v = 3 0.000 0.082 0.918

High persistency in each latent state, but also a given tendency to move
to higher adjacent states
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Application Constrained basic LM models

Model selection

Table : Model selection for k = 3: maximum log-likelihood value, number of
parameters, and BIC index

Model ˆ̀ # par BIC
LC -658.238 32 1491.454

LM1 -646.895 32 1468.768
LM2 -658.593 14 1393.738
LM3 -660.600 12 1375.890
LM4 -661.930 11 1373.070
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Software implementation

R package LMest

This package includes a set of functions to fit LM models in the basic
version and in the extended version with individual covariates

The main function for the model estimation is est_lm_basic
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Software implementation

Data structure
> data(data_drug)
> data_drug = as.matrix(data_drug)
> head(data_drug)

> S=data_drug[,1:5]-1 # matrix of item responses
> yv=data_drug[,6] # vector of weights

> k=3 # number of latent states

Model estimation
> # Basic unconstrained LM model
> LM1 = est_lm_basic(S,yv,k,mod=0)
> # Time-homogeneous LM model
> LM2 = est_lm_basic(S,yv,k,mod=1)
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Software implementation

Output
> LM1$piv # latent states initial probabilities
> LM1$Pi # transition probabilities
> LM1$Psi # conditional response probabilities

> # Marginal probabilities
> marg_prob_2 = colSums(LM1$Pi[,,2]*LM1$piv)
> marg_prob_3 = colSums(LM1$Pi[,,3]*marg_prob_2)
> marg_prob_4 = colSums(LM1$Pi[,,4]*marg_prob_3)
> marg_prob_5 = colSums(LM1$Pi[,,5]*marg_prob_4)
> round(rbind(LM1$piv, marg_prob_2, marg_prob_3,
marg_prob_4, marg_prob_5), 4)
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Software implementation
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