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Introduction

Background

Many real problems in the data analysis may be treated through the
latent variable models

A latent variable is a variable which is not directly observable and is
assumed to affect the response variables (i.e., manifest variables)

Examples: customer satisfaction, quality of life, mathematics ability, . . .

Example 1: the habit to the use of marijuana affects the probability of
observing a given value of consumption along the time

Example 2: the satisfaction for the health services affects the probability
of answering in a certain way to a satisfaction questionnaire

Example 3: beyond the effect of observed covariates, there remains a
part of unexplained heterogeneity of the probability of a preterm delivery,
which is due to unobservable woman/pregnancy characteristics
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Introduction

Use of latent variables

Latent variables are typically included in a statistical model with different
aims:

accounting for measurement errors: the latent variables represent the “true”
outcomes and the manifest variables represent their “disturbed” versions
(Example 1, Example 2)

representing the effect of unobservable covariates/factors and then
accounting for the unobserved heterogeneity between subjects: latent
variables are used to represent the effect of these unobservable factors
(Example 3)
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Introduction

Classification of latent variable models
The latent variable models are typically classified according to

nature of the response variables: discrete or continuous

nature of the latent variables: discrete or continuous

inclusion or not of individual covariates

We focus on
Basic Latent Class (LC) models (Example 1, Example 2):
models for categorical response variables based on a discrete latent
variable, the levels of which correspond to latent classes in the population

LC models with covariates (Example 3):
extension of basic LC models with observable covariates affecting the
probability to belong to the latent classes

Generalized Linear Mixed Models (GLMMs) with discrete random-effects
(Example 3):
extension of the class of Generalized linear models (GLM) for (continuous
or) categorical responses which account for unobserved heterogeneity,
beyond the effect of observable covariates
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Standard latent class model

The standard latent class model

LC models are based on the assumption that the population is composed
by unobservable subgroups (or latent classes) of individuals, sharing
common characteristics related to a latent variable of interest (e.g., the
satisfaction for health services, the tendency to have a preterm delivery)

Aim of LC models: clustering individuals in homogenous latent classes
on the basis of observed responses to categorical variables (or items)

In their standard version, LC models rule out covariates
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Standard latent class model

Basic notation

Yij: categorical response variable for subject i to item j, with i = 1, . . . , n
and j = 1, . . . , Ji

y: value observed for Yij, with y = 0, 1, . . . , rj − 1

Yi = (Yi1, . . . ,YiJ): vector of items for subject i

Ui: discrete latent variable for subject i

ξu: value assumed by Ui (support point), with u = 1, . . . , k
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Standard latent class model

Main assumptions

Basic LC:
Y1 Y2

U
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Local independence assumption: given latent class Ui = u, probability of
answering Yij is independent of probability of answering Yil, for
j 6= l; j, l = 1, . . . , J
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Standard latent class model

Model formulation

Manifest distribution of response vector Yi

p(y) = p(Yi = y) =

k∑
u=1

πu pu(y)

mass probability (or weight) that subject i belongs to class u (u = 1, . . . , k):

πu = p(Ui = ξu) =
exp(ψ0u)

1 + exp(ψ0u)
u.c.

∑
u

πu = 1; πu > 0

conditional probability of answering y, given the latent class u (local
independence assumption), y = 0, . . . , rj − 1; u = 1, . . . , k:

pu(y) = p(Yi = y|Ui = ξu) =

Ji∏
j=1

p(Yij = y|Ui = ξu)

S. Bacci (unipg) 9 / 52



Standard latent class model

Parameter estimation

The number of free model parameters is equal to

#par = (k − 1)︸ ︷︷ ︸+ kJ(rj − 1)︸ ︷︷ ︸
πu pu(y)

The LC model is estimated by the maximization of the log-likelihood

`(θ) =

n∑
i=1

log p(Yi = y) =

n∑
i=1

log
k∑

u=1

πupu(yi)

where θ is the vector of free model parameters

The log-likelihood `(θ) may be efficiently maximized through an
Expectation-Maximization (EM) algorithm
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Standard latent class model

EM algorithm

The EM algorithm treats the estimation of LC model parameters as an
estimation problem in presence of missing data, being the belonging of
individuals to the corresponding latent class a missing information

The EM algorithm is based on the complete log-likelihood

`∗(θ) =

n∑
i=1

k∑
u=1

λui [logπu + log pu(yi)] ,

where λui is an indicator equal to 1 if subject i belongs to latent class u
and to 0 otherwise
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Standard latent class model

EM algorithm

The EM algorithm alternates two steps until convergence in `(θ)

E-step It consists of computing the expected value of `∗(θ), which
is equivalent to computing the posterior probabilities λui,
under current estimates of model parameters:

λ̂ui = p(Ui = ξu|Yi = y) =
πu pu(yi)∑k

c=1 πc pc(yi)

M-step It consists in updating the model parameters by maximizing
the expected value of `∗(θ), obtained by substituting the
values of λ̂ui
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Standard latent class model

Warnings . . .

The maximization process requires a set of starting values to initialize the
EM algorithm

The log-likelihood of a LC model is usually characterized by local
maximum points: we suggest to try several randomly chosen (e.g., from
an U(0, 1)) initializations of the EM algorithm to detect the global
maximum solution

The number k of latent classes is not a model parameter, but it has to be
a priori fixed: we suggest to select it on the basis of some information
criteria, such as BIC index

BIC = −2ˆ̀+ #par log(n)

In practice, we fit the model for increasing values of BIC until does not
start to increase and then we take the previous value of k as optimal one
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Standard latent class model

Use of standard LC model

After the parameter estimation, each individual i may be allocated to one
of the k latent classes on the basis of the highest estimated posterior
probability

λ̂ui =
π̂u p̂u(yi)∑k

c=1 π̂c p̂c(yi)

Note that the allocation to latent classes depends only on the observed
configuration of item responses
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Latent class models with covariates

LC models with covariates

Covariates may be included in an LC model in two different ways

Case 1 on the mass probabilities, that is, on the model for the
distribution of the latent variable Ui, via a multinomial logit
model (or global logit in case of ordered classes)

Case 2 on the observed item responses, via a logit type
parameterization
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Latent class models with covariates

Case 1

Y1 Y2

U

X
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Latent class models with covariates

Case 2

Y1 Y2
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Latent class models with covariates

LC models based on the two extensions have a different interpretation

Case 1 the main interest is on the discrete latent variable which is
measured through the observable response variables and
on how this latent variable depends on the covariates;
covariates directly affect the probability of belonging to a
given class

Case 2 the discrete latent variable is used to account for the
unobserved heterogeneity and then the model may be
seen as a discrete version of a logit type model with
random intercept; covariates directly affect the probability
of observing a given pattern of item responses
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Latent class models with covariates

LC models with covariates - Case 1

Mass probabilities πu now are subject-specific and depend on the vector
of M-covariates Xi = (X1i, . . . ,XMi), through a multinomial logit model

πui(x) = p(Ui = ξu|Xi = x) =
exp(ψ0u + x′iψu)

1 + exp(ψ0u + x′iψu)

exp(ψ0u +
∑M

m=1 ψmuxmi)

1 + exp(ψ0u +
∑M

m=1 ψmuxmi)
u = 2, . . . , k

or, equivalently,

log
πui(x)

π1i(x)
= ψ0u + x′iψu = ψ0u +

M∑
m=1

ψmuxmi u = 2, . . . , k

Regression coefficient ψmu means the effect of an increase of an unit of
m-th covariate on the logit of belonging to class u with respect to the
reference class (e.g., class 1)
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Latent class models with covariates

Model formulation and estimation - Case 1

Manifest distribution of response vector Yi

p(Yi = y|Xi = x) =

k∑
u=1

πui(x) pu(y)

The number of free model parameters is equal to

#par = (k − 1)(M + 1) + kJ(rj − 1)

The model is estimated by the maximization of the log-likelihood

`(θ) =

n∑
i=1

log
k∑

u=1

πui(x)pu(yi)

The log-likelihood `(θ) may be efficiently maximized through an EM
algorithm, where the M-step is modified relying on standard algorithms
for the maximization of the likelihood of a multinomial logit model

S. Bacci (unipg) 20 / 52



Latent class models with covariates

LC models with covariates - Case 2

Conditional probability pu(y) depends also on the vector of T-covariates
Wij = (W1ij, . . . ,WTij), through a logit or probit type parameterization

puw(y) = p(Yi = y|Ui = ξu,Wij = w) =

Ji∏
j=1

p(Yij = y|Ui = ξu,Wij = w)

A logit type model with random intercept is usually adopted for
p(Yij = y|Ui = ξu,Wij = w). For instance, in case of binary responses we
have

log
p(Yij = 1|Ui = ξu,Wij = w)

p(Yij = 0|Ui = ξu,Wij = w)
= ξu + w′ijβ

Regression coefficients in β mean the effect of an increase of an unit of
the t-th covariate (t = 1, . . . ,T) on the logit of answering y = 1 rather than
y = 0 to item j
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Latent class models with covariates

Model formulation and estimation - Case 2

Manifest distribution of response vector Yi

p(Yi = y|Wij = w) =

k∑
u=1

πu puw(y)

The number of free model parameters is equal to

#par = (k − 1) + kJ(rj − 1) + TJ

The model is estimated by the maximization of the log-likelihood

`(θ) =

n∑
i=1

log
k∑

u=1

πu puw(yi)

The log-likelihood `(θ) may be efficiently maximized through an EM
algorithm, where the M-step is modified relying on standard algorithms
for the maximization of a weighted likelihood of a logit type model
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Applications

Applications

Example 1: analysis of marijuana consumption

We adopt a basic LC model without covariates

We have five response variables (J = 5) with 3 ordered levels (y = 0, 1, 2 for
all j)

Example 2: analysis of the satisfaction for the health services

We adopt an LC model with covariates on the mass probabilities (Case 1)

We have one response variable (J = 1) with 3 ordered levels (y = 0, 1, 2)

Example 3: analysis of determinants of preterm deliveries

We adopt an LC model with covariates both on the mass probabilities and
on the response variable (Case 1 + Case 2)

We account for the multilevel structure of data, consisting in
babies/pregnancies nested in women

We have one response variable with 2 levels (y = 0, 1)
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Applications Example 1: Analysis of marijuana consumption

Data source and study population

Data is based on 5 annual waves of the National Youth Survey
concerning the consumption of marijuana among individuals who were
aged 13 years in 1976

Sample size: 237 individuals followed up for 5 years

Ordinal response variable for each wave measuring the marijuana
consumption: 0 = never in the past year, 1 = no more once in a month in
the past year, 2 = more than once a month in the past year

Aim of the study: detecting homogenous classes of individuals with
respect to the level of marijuana consumption
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Applications Example 1: Analysis of marijuana consumption

Model selection and latent class weights

Table : Selection of the number of latent classes: maximum log-likelihood value,
number of parameters, and BIC index

k ˆ̀ # par BIC
2 -695.2882 21 1505.406
3 -658.2381 32 1491.454
4 -652.8618 43 1540.850

On the basis of BIC index we select k = 3 latent classes

Table : Estimates of latent class weights πu = p(Ui = ξu) for model with k = 3

u π̂u

1 0.618
2 0.215
3 0.167
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Applications Example 1: Analysis of marijuana consumption

Interpretation of latent classes

Table : Estimates of conditional response probabilities p(Yij = y|Ui = ξu)

Observed response
j u y = 0 y = 1 y = 2
1 1 0.9732 0.0199 0.0068
1 2 0.9401 0.0599 0.0000
1 3 0.6959 0.2030 0.1011
2 1 0.9913 0.0087 0.0000
2 2 0.6761 0.2523 0.0716
2 3 0.3873 0.3256 0.2870
3 1 1.0000 0.0000 0.0000
3 2 0.2838 0.6025 0.1137
3 3 0.1522 0.2610 0.5868
4 1 0.9414 0.0375 0.0212
4 2 0.3547 0.6453 0.0000
4 3 0.0000 0.0672 0.9328
5 1 0.8244 0.1251 0.0504
5 2 0.3171 0.5867 0.0962
5 3 0.0265 0.0959 0.8775

S. Bacci (unipg) 26 / 52



Applications Example 1: Analysis of marijuana consumption

The three classes correspond to an increasing tendency to marijuana
consumption

The biggest class (class 1) collects individuals with the smallest tendency
to marijuana consumption

The smallest class (class 3) collects individuals with the highest tendency
to marijuana consumption

We observe a general tendency to increase the marijuana consumption
along the time, for all the latent classes

Note that individuals belong to the same latent class during all the time
period, but the conditional distribution of responses is allowed to change
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Applications Example 2: Satisfaction for health services

Data source and study population

Data comes from the survey on Italian families about Health conditions
and use of health services - 2013 administered by the Italian National
Institute of Statistics (ISTAT) in the period 2012-2013

Main topics of the survey: health conditions (self-evaluated health status,
presence of chronic diseases, . . . ), presence of disabilities, life styles
(smoking habits, physical activity, . . . ), prevention, use of health services,
use of unusual drugs or therapies

We accounted for individuals who received specialized medical
examinations; individuals older than at least 18 years

We adopt k = 3 latent classes

Sample size: 50,871 individuals

Aim of the study: detecting homogenous classes of individuals with
respect to the level of satisfaction for the received service and
determinants of belonging to the latent classes
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Applications Example 2: Satisfaction for health services

Variables of interest

Table : Response variable

Satisfaction level insufficient 0.056
sufficient/good 0.522
excellent 0.422
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Applications Example 2: Satisfaction for health services

Table : Covariates

Variable description Category Proportion/Average
Gender male 0.41

female 0.59
Age average years 55.36
Education level Compulsory diploma 0.53

High school diploma 0.35
Degree or above 0.12

Geographic area South 0.35
Centre 0.19
North 0.46

Physical state index discomfortable condition (≤ 41) 0.27
comfortable condition > 41 0.73

Psychological state index discomfortable condition (≤ 41) 0.25
comfortable condition > 41 0.75

Economic status discomfortable 0.37
comfortable 0.63

Smoking habit No 0.82
Yes 0.18

BMI average value 25.27
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Applications Example 2: Satisfaction for health services

Estimates of conditional probabilities and average
weights

Table : Estimates of pu(y) = p(Yi = y|Ui = ξu) and π̄ui(x) = p(Ui = ξu|Xi = x)

Latent class
y u = 1 u = 2 u = 3
0 0.231 0.001 0.000
1 0.709 0.730 0.105
2 0.060 0.270 0.895

¯̂πui(x) 0.239 0.437 0.324
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Applications Example 2: Satisfaction for health services

Estimates of regression coefficients ψ

ψ̂m2 ψ̂m3 ŝem2 ŝem3

intercept ψ0u 0.64 -0.52 0.34 0.29
female (m = 1) -0.11 0.29∗ 0.06 0.07

age (m = 2) 0.01 0.00 0.00 0.00
ed_high_school (m = 3) 0.19∗ 0.18∗ 0.08 0.05

ed_degree (m = 4) 0.33∗ 0.39∗ 0.11 0.08
area_north (m = 5) 0.05∗ 0.64∗ 0.02 0.10
area_centre (m = 6) -0.04 0.30∗ 0.08 0.08

physical_disc (m = 7) -0.16∗ -0.33∗ 0.07 0.06
psychol_disc (m = 8) -0.48∗ -0.45∗ 0.10 0.05
economic_good (m = 9) 0.44∗ 0.51∗ 0.09 0.05

foreign (m = 10) -0.43∗ -0.39∗ 0.19 0.09
smoke (m = 11) -0.30∗ -0.00 0.08 0.07

bmi (m = 12) -0.02∗ -0.00 0.01 0.01
∗: statistically significant at 5% level
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Applications Example 2: Satisfaction for health services

Estimates of average latent class weights

Table : Average estimates of p(Ui = ξu|Xi = x)

Latent class
Pattern u = 1 u = 2 u = 3
Female, Italian, Degree 0.17 0.42 0.41
Female, Foreign, Degree 0.26 0.35 0.39
Female, Italian, Compulsory educ. 0.26 0.42 0.32
Male, Italian, Compulsory educ. 0.26 0.47 0.26
Male, Italian, North 0.20 0.45 0.35
Male, Italian, South 0.28 0.51 0.21
Female, Discomf. physical status 0.24 0.45 0.31
Female, Discomf. psychological status 0.29 0.36 0.34
Female, Discomf. psycho-physical status 0.35 0.39 0.25
Female, Comfortable psycho-physical status 0.20 0.42 0.39
Male, high BMI 0.27 0.44 0.29
¯̂πui(x) 0.24 0.44 0.32
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Applications Example 2: Satisfaction for health services

Conclusions

The proposed LC model with covariates allows us to classify an individual
in one of the three latent classes, on the basis of some individual
characteristics

Each latent class is homogenous with respect to the satisfaction level for
the specific type of received health service

Individuals in the same latent class detect a set of shared needs

Future developments: we intend to formulate an appropriate LC model
that accounts for

all the types of health services (day hospital, surgery, diagnostics checks)

the multilevel structure of data: individuals within families

the presence of informative missing data

S. Bacci (unipg) 34 / 52



Applications Example 3: Prevention of preterm births

Data source and study population

Data comes from the Standard Certificate of Live Birth (SCLB)
administered in the Umbria Region since 2005 until 2013

SCLB is a questionnaire compulsorily filled in all Italian birth centres
within ten days after the delivery by one of the attendants the birth (e.g.,
doctor, midwife)

SCLB collects information both on infants and their parents (mainly
mothers), other than on the course of pregnancy

We accounted for: women that delivered for the first time during years
2005-2013 and that delivered at least twice in this time interval; only
singleton births; infants with a birthweight of at least 500 grams and a
gestational age between 24 and 42 (included) weeks

Sample size: 12,157 babies/deliveries within 5,865 women

Aim of the study: detecting determinants of preterm births and clustering
pregnant women on the basis of the probability of delivering preterm
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Applications Example 3: Prevention of preterm births

Variables of interest

Table : Response variable

Variable description Category Proportion
Preterm birth (yij) y = 0: normoterm birth 0.957

y = 1: preterm birth (< 37 weeks) 0.043

Table : Characteristics developed during the pregnancy

Variable description Category Proportion
First medical check within the first pregnancy quarter 0.981

after the first pregnancy quarter 0.019
Course of pregnancy physiologic 0.955

pathologic 0.045
Baby’s gender female 0.479

male 0.521
Birthweight low birthweight (< 2500 grams) 0.037

normal weight 0.963
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Applications Example 3: Prevention of preterm births

Table : Characteristics known at the beginning of the pregnancy

Variable description Category Proportion
Woman’s age < 20 years 0.013

between 20 and 35 years 0.750
> 35 years 0.237

Woman’s citizenship Italian or other western citizenship 0.814
foreign citizenship 0.186

Woman’s job condition working woman 0.672
not working woman 0.328

Partner’s job condition working partner 0.970
not working partner 0.030

Woman’s educational level middle school or less 0.183
high school 0.495
degree or above 0.322

Previous miscarriages none 0.835
1 miscarriage 0.133
≥ 2 miscarriages 0.031

Voluntary interruptions none 0.962
≥ 1 0.038

Type of conception natural conception 0.991
assisted fertilisation 0.009

Siblings first born 0.518
at least second born 0.482
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Applications Example 3: Prevention of preterm births

Model specification

Data has a hierarchical structure with babies/pregnancies nested within
women

We denote by j a generic baby/pregnancy (instead of the item) and by i a
generic woman

We assume that the probability of a preterm delivery is

directly affected by some observable baby/pregnancy characteristics (Wij),
which develop during the pregnancy, and by some unobservable (latent)
characteristics of the woman
indirectly affected by some characteristics of the woman and her
childbearing history (Xi), which are known at the beginning of the pregnancy
and directly affect the probability of belonging to a given latent class, which
is homogeneous in terms of risk of preterm delivery
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Applications Example 3: Prevention of preterm births

LC model with covariates (Case 1 + Case 2)

The resulting model is a logit model with a discrete random intercept:

log
p(Yij = 1|Ui = ξu,Wij = w)

p(Yij = 0|Ui = ξu,Wij = w)
= ui + w′ijβ

where value assumed by random intercept ui is obtained by:

log
πui(x)

π1i(x)
= log

p(Ui = ξu|Xi = x)

p(Ui = ξ1|Xi = x)
= ψ0u + x′iψu u = 2, . . . , k
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Applications Example 3: Prevention of preterm births

Selection of the number k of latent classes

Estimated log-likelihood (ˆ̀), number of parameters (# par), and BIC
values, for k = 1, 2, 3, 4

k = 1 k = 2 k = 3 k = 4
ˆ̀ -1,532.362 -1,511.625 -1,508.457 -1,508.344
# par 18 20 22 24
BIC 3,222.644 3,198.718 3,209.929 3,227.248

After having chosen the value of k, we select the set of statistically
significant covariates by using a backward selection strategy
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Applications Example 3: Prevention of preterm births

Estimates of support points and average weights

Table : Estimates of ξu and π̄ui(x)

u = 1 u = 2
ξ̂u -5.537 -2.395
¯̂πui(x) 0.796 0.204

Latent class 1 detects women with a smaller risk of preterm delivery with
respect to women belonging to latent class 2
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Applications Example 3: Prevention of preterm births

Estimates of regression coefficients β

β̂t ŝet t-value p-value OR
course (t = 1) 2.053 0.233 8.803 0.000 7.790
lbw (t = 2) 4.581 0.493 9.287 0.000 97.570

course: pathological course of pregnancy

lbw: low birthweight
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Applications Example 3: Prevention of preterm births

Estimates of regression coefficients ψ

ψ̂m2 ŝem2 t-value p-value OR
intercept ψ02 -1.619 – – – 0.198
miscar2 (m = 1) 0.723 0.177 4.092 0.000 2.060
p_nonjob (m = 2) 1.392 0.481 2.893 0.004 4.023
w_compeduc (m = 3) 0.855 0.292 2.927 0.003 2.352

miscar2: at least 2 miscarriages

p_nonjob: non working partner

w_compeduc: woman with a compulsory education level at most
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Applications Example 3: Prevention of preterm births

Conclusions

The proposed LC model with covariates allows us

to classify a woman in one of the two latent classes, on the basis of some
characteristics known at the beginning of the pregnancy
to monitor the possibility that the risk of a preterm delivery modifies on the
basis of some characteristics, which develop during the pregnancy

Odds of belonging to class 2 with respect to class 1 (oddsh2) and odds of
preterm delivery for class 1 (oddsy1,h1) and for class 2 (oddsy1,h2), for some
specific covariate patterns

course lbw miscar2 p_nonjob w_compeduc oddsh2 oddsy1,h1 oddsy1.h2
0 0 0 0 0 0.198 0.004 0.091
1 1 1 1 1 3.860 2.997 69.310
1 0 0 1 1 1.873 0.031 0.710
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Software implementation

R package MultiLCIRT

Example 1 and Example 2 are performed through R package
MultiLCIRT

Package MultiLCIRT provides a flexible framework for the LC and Item
Response Theory (IRT) analysis of dichotomous and ordinal polytomous
outcomes under the assumption of multidimensionality and discreteness
of latent traits. Every level of the abilities identify a latent class of
subjects. The fitting algorithms are based on the EM paradigm and allow
for missing responses and for different item parametrizations. The
package also allows for the inclusion of individual covariates affecting the
class weights

The main function for the model estimation is est_multi_poly
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Software implementation

Example 1

Data structure
> library(LMest)
> data(data_drug)
> head(data_drug)

V1 V2 V3 V4 V5 V6
1 1 1 1 1 1 111
2 1 1 1 1 2 18
3 1 1 1 1 3 7
4 1 1 1 2 1 6
5 1 1 1 2 2 6
6 1 1 1 2 3 1

> Y=data_drug[,1:5]-1 # matrix of item responses
> ww=data_drug[,6] # vector of weights
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Software implementation

Model estimation
out = est_multi_poly(S=Y,yv=ww,k=3,output=T,disp=T)

S: data matrix (one record for each response pattern)
yv: vector of weights of response patterns
k: number of latent classes
output=T: to return additional outputs (e.g., conditional response
probabilities)
disp=T: to display the likelihood evolution step by step

Output
> out$piv # class weights
> out$Phi # conditional response probabilities
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Example 2

Data structure
> head(Y) # matrix of item responses

[,1]
[1,] 1
[2,] 2
[3,] 2
[4,] 1
[5,] 2
[6,] 1

> head(XX)[1:8] # matrix of covariates
SESSO ETA EDU2 EDU3 rip1 rip2 INDFIS1 INDMENT1

1 1 56 0 0 1 0 1 1
2 0 49 1 0 1 0 1 1
3 1 44 0 0 1 0 1 1
4 1 87 0 0 1 0 0 0
5 1 56 0 0 1 0 1 1
6 1 66 0 0 1 0 0 0
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Model estimation
> out = est_multi_poly(S=Y,k=3,X=XX,output=T,out_se=T,
disp=T,tol=10^-6)

S: data matrix (one record for each individual; if you have one record for
each response pattern you must specify option yv)
k: number of latent classes
X: matrix of observed covariates that affects the weights
output=T: to return additional outputs (e.g., conditional response
probabilities)
out_se: to return the standard errors
disp=T: to display the likelihood evolution step by step
tol: to set the tolerance level for the convergence of the algorithm
measured by the relative difference between consecutive log-likelihoods
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Output

> out$piv # average class weights
> out$Phi # conditional response probabilities
> out$De # coefficients of covariates
> out$seDe # standard errors
# matrix of weights for every covariate pattern configuration
> out$Piv
# matrix of weights for a given profile
> prof1 = (XX[,1]==1 & XX[,7]==1 & XX[,8]==1)
> Piv_prof1 = out$Piv[prof1]
> colMeans(Piv_prof1)
# classification of individuals
> class = apply(out$Piv,1,which.max)
# matrix of the posterior response probabilities for
each covariate configuration and latent class
> out$Pp
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Example 3

Example 3 is performed through an R function specific for the estimation
of GLLMs with discrete random effects, named est_lc_bin_ext.R

Model estimation
> out = est_lc_bin_ext(y, X, Z, id, k, resp="bin")

y: binary or ordinal response variable
X: matrix of cluster-varying (or time-varying) covariates (e.g., characteristics
of pregnancy that change from one pregnancy to another one)
Z: optional matrix of cluster-constant (or time-constant) covariates (e.g.,
citizenship of woman); they may also be obtained by averaging on variables
in X
id: cluster-level units indicator
k: number of latent classes at cluster-level
resp: type of response (binary, ordinal)
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