How does skill-biased technological change affect human capital accumulation path?

Tim Eggebrecht*

This draft: May 6, 2009

Abstract

This paper studies the effects of skill-biased technological change (SBTC) on human capital accumulation path (HCAP) on two particular issues: (i) the effects on accumulation path in the short- and long-run of a given economy; (ii) the extent of the effects on poor and rich countries. To study these questions, I employ an OLG-model where capital market is assumed to be imperfect. The analysis shows that, in both short- and long-run, SBTC affects the HCAP negatively when the economy is in low development stages and positively in high development stages. As for countries with different characteristics, poor countries are more likely to be negatively affected in the long-run while rich countries converge to steady-state with higher human capital accumulation after the occurrence of SBTC.

JEL Classifications: J24, J31, O33

Keywords: Skill-Biased Technological Change, Education Decisions, Human Capital Accumulation

*Department of Economics, University of Konstanz, Box D145, 78457 Konstanz, Germany, tim.eggebrecht@uni-konstanz.de. I am thankful for comments and suggestions from the following persons: Leo Kaas, Christian Manger, Stefan Zink, seminar participants in Konstanz and participants of the workshop “Dynamic Macroeconomics” in Strasbourg, 2008. Financial support is acknowledged from the Ministry of Science, Research and the Arts Baden-Württemberg. All remaining errors are the author’s responsibility.
1 Introduction

Spreading concerns about the effects of technology change on the labour force have arisen with observations of increasing wage inequality and increasing supply of skilled-labour in many developed countries in recent decades. So far, many works have been trying to explain this trend by the existence of skill-biased technological change (SBTC). SBTC refers to introduction of a new technology that favours workers with higher level of education or skill comparing to those with lower level. One example is the use of computers in workplaces which may be a complement or substitute with skilled workers.

This paper studies the effects of SBTC on human capital accumulation path (HCAP). The link between SBTC and HCAP arises from influence of the technology change on wage levels and wage inequality. I later show that any changes in wage levels and wage inequality will also affect education decisions of individuals in the present and future periods. Since education decisions over many periods determine human capital accumulation path, HCAP will be affected consequently.

The explanation to the SBTC-HCAP relationship is given by the fact that SBTC changes marginal product of workers in the current and future periods where new technology is in use. In particular, SBTC increases the marginal product of higher skilled workers more than that of less skilled workers. Therefore, in the case of perfect labour market, wage levels will change and firms give higher remuneration to high-skilled workers relative to low-skilled workers. The latter means that wage inequality would rise.

These changes in current wage levels and future wage inequality play an important role in determining education decision of a household. On the one hand, household’s expenses on education investment depend on current wage levels because borrowing is constrained under the assumption of imperfect capital market. On the other hand, these expenses depend on return of education investment given by the future wage inequality between high- and low-skilled workers. In sum, because wage determinants can affect education decision of a household, the education decision itself is therefore affected by SBTC. And not only the current education decisions are influenced by SBTC but also all future education decisions. As a result, the sequence of human capital accumulation will change after
introduction of a new skill-biased technology.

To study the SBTC-HCAP relationship, two questions are of particular interest: (i) For an economy with given characteristics, what are effects of SBTC on the accumulation path in the short- and long-run? (ii) Does SBTC affect equally or not countries with different characteristics? In this paper, I distinguish the cases of poor and rich countries.

Concerning dynamic effects of SBTC, short-run analysis studies the evolution of human capital growth rate and identifies whether human capital growth accelerates or slows down. Long-run analysis focuses on how SBTC affects the steady-state of human capital accumulation. In the scope of this paper, this steady-state is defined by constant skill formation between educated and uneducated adults. Regarding the effects on economies with different characteristics, the paper studies the cases of rich and poor countries which are differentiated by fertility rates. Empirical evidence shows that rich countries tend to have lower fertility rates than poor countries.

To study these questions, I employ an overlapping-generations model where parents invest in education of their children. Capital market is assumed to be imperfect where the assumption of imperfection is taken to the extreme of no borrowing. To simplify the analysis, I consider only two types of adults, the skilled ones who were educated in previous period, and the unskilled ones who were not.

Results of the analysis are the following. With regard to SBTC effects in an economy with given characteristics, I find that, in both short- and long-run, SBTC affects the HCAP negatively when the economy is in low development stages and positively in high development stages. As for countries with different characteristics, poor countries are more likely to be negatively affected in the long-run while rich countries converge to steady-state with higher human capital accumulation after the occurrence of SBTC.

The analysis of SBTC effects on HCAP is recent in the literature though there are many works that have been studying some other factors affecting human capital accumulation. Moaz and Moav (1999), for example, study the effect of changes in wages on the human capital accumulation process for a given level of technology. They find that wage levels and future wage inequality are important to derive education decision and human capital accumulation path. As an extension of their
work, I take into account the possibility of technology change, in particular SBTC, as one of the possible factors affecting wages, which in turn affect the HCAP.

However, there are mainly two explanations in the literature regarding changes in wages: (i) skill-biased technological change and (ii) increasing international trade or globalisation effects. Both arguments are raised to explain the increase in wage inequality in the USA during the 1980s (see for example empirical studies of Murphy and Welch, 1989; Levy and Murnane, 1992). The SBTC explanation argues that SBTC increases the demand for skilled labour relative to unskilled labour and as a consequence, raises wage inequality between skilled and unskilled workers.¹ Empirical evidence founded by Mincer (1991) and Autor, Katz and Krueger (1998) shows that introduction of computers in workplaces, which is seen as SBTC, can explain most of the observed changes in wage inequality. Nevertheless, Card and DiNardo (2002) argue that not all skill-biased technologies would have effects on wages but only a certain type. International trade is another explanation of changes in domestic wage levels (see Wood, 1995; Burtless, 1995; and Wood, 1998). This explanation is based on the Stolper-Samuelson theorem which predicts changes in domestic input factor rewards when final good prices on the world market change.² To identify which one of these two arguments has stronger explanatory power, Acemoglu (2002) studies empirically the case of the USA and Winchester and Greenaway (2007) have done the case of the UK. Both studies find that SBTC is the major source for the observed increase in wage inequality in these countries.

Therefore, in this paper, I concentrate on SBTC effects on wages which in turn affects human capital accumulation path. The remaining part of the paper is organised as follows. Section 2 describes the model specification. Section 3 derives the human capital accumulation path. Section 4 discusses the effect of skill-biased technological change on human capital accumulation. Section 5 concludes the paper.

¹See Acemoglu (1998), Bound and Johnson (1992) for the USA; Machin and van Reenen (1998) for a comparison of the USA and other OECD countries.
²See Stolper and Samuelson (1941).
2 The Model Specification

To analyse effects of SBTC on HCAP, I employ an overlapping-generations model over an infinite time horizon. In every period, the economy produces a single homogeneous good using all types of human capital as input factors. The supply of human capital is determined by individuals’ decision on the level of education investment in each child in the preceding period. The capital market is assumed to be imperfect where this assumption is driven to the extreme of no borrowing possibilities whereas the labour market is characterised by perfect competition.

2.1 Individuals

Individuals live for two periods labelled child- and adulthood respectively. In childhood, individuals are passive, i.e., do not consume, and may receive education. Later in life, adult individuals supply labour, consume, and invest in their children’s education.

For simplification reason, I assume further that parents’ fertility decision is exogenous. That is, each adult has a given number of children n, which is completely independent from his decision on children’s education plan. A version of the model with both endogenous education and endogenous fertility decisions would lead to the same qualitative results comparing to the version with endogenous education and exogenous fertility decisions. Once parental education decision has been made, it leads to two different skill levels of grown-up children in the next period, i.e., an adult can be either skilled or unskilled depending on his parent’s education decision in the past.

Each parent shares the same utility function which is defined by his own consumption and quality of his children. The latter is represented by expected average income of children. Formally, this utility is given by

$$U_i^t = \ln[c_i^t] + \beta \ln \left[w_{i+1}^u + \lambda_i^s \left(w_{i+1}^s - w_{i+1}^u \right) \right]$$

The model specification is inspired by Maoz and Moav (1999).

However, it is largely argued in the literature that there is a link between parents’ fertility decision and their decision on children’s education plan. This interdependency was pointed out first by Becker (1960) and Becker and Lewis (1973).
where \(i \) denotes parent’s skill level, with \(i = u \) in the case of unskilled parent and \(i = s \) in the case of skilled parent. Variable \(c_t^i \) denotes parent’s consumption, \(\beta \) represents degree of altruism, and \(w_{t+1}^s \) (resp. \(w_{t+1}^u \)) denotes wage income of his skilled (resp. unskilled) grown-up children in the next period. The proportion of children from parent \(i \) who receive education is denoted by \(\lambda_t^i \), where \(\lambda_t^i \in [0, 1] \). This proportion is endogenously determined by the parental education decision.

Note that no expectation operator is contained in equation (1) although future or expected wages of children are determinants of parent’s utility. Here, individuals have perfect foresight over future wages because I suppose that there is no uncertainty in the model and that individuals form rational expectations over future variables.

Note also that the number of children does not enter equation (1) though parents may also value the number of children. This is due to the assumption that the number of children is constant and exogenously given. In fact, including \(n \) would have only a multiplier effect on children’s average wage income and would not change the results qualitatively.

To form his education decision, parent \(i \) will maximise his utility subjected to his budget constraint which is given by

\[
 w_t^i = c_t^i + \lambda_t^i ne_t
\]

(2)

where \(w_t^i \) denotes parent’s \(i \) wage income and \(e_t \) denotes education cost per child.

Education cost per child is assumed to follow the equation

\[
e_t = \eta w_t^s.
\]

It is the proportion \(\eta \) of the wage of a skilled adult. This is because only skilled adults can work as “teachers” and one teacher can transfer skill and knowledge to
more than one child at the same time.5,6 For plausible education cost per child, I suppose $\eta \in (0, 1)$.

Now that we have defined education cost per child, it is important to know whether this cost is affordable for parents or not. To give an idea of how much this cost represents in parent’s income, we introduce relative education cost for skilled and unskilled parents, $\frac{e_t}{w_t}$. For skilled parents, relative education cost is determined by parameter η and is independent of the wage ratio between skilled and unskilled workers. For unskilled parents, relative education cost is given by $\eta \frac{w^s_t}{w_t}$ and thus, depends on the wage ratio.

2.2 Firms

Firms produce a single consumption good employing both skilled and unskilled labour in production. Output Y_t follows the constant returns to scale production function

$$Y_t = \left[b\left((W^s_t)^\gamma + (W^u_t)^\gamma\right)\right]^\frac{1}{\gamma}$$

where W^s_t (resp. W^u_t) denotes the number of skilled (resp. unskilled) workers employed in the production process. Input factors are weighted by b, which is positive and exogenously given. Exponent $\gamma \in (0, 1)$ determines the elasticity of substitution between both labour inputs.7 This particular formulation of the production function in equation (3) allows SBTC occurrence which can be simulated by an exogenous rise in b.8

Wages are determined on the labour market where supply of and demand for labour meet. Current supply of labour is given by education decisions in the last

5Maoz and Moav (1999), de la Croix and Doepke (2003, 2004) instead assume that education cost depends on average human capital in a society since this is the average human capital level of teachers. In their models with skilled and unskilled labour being perfect substitutes to each other, this assumption means that education cost depends on average wage. For simplification reason, I assume here dependency of the education cost on the skilled wage rate only. The results of this paper do not change when education cost per child would depend on average wage.

6This turns out to be a crucial assumption for this paper’s results. One determinant for the education decision is relative education cost. Due to the assumed relationship between e_t and w^s_t, relative education cost depends differently on the current wage ratio or in other words current wage inequality as explained below.

7The assumption on γ ensures that both input factors are substitutes in this production function.

8In this, I follow Acemoglu (2002).
period. Current demand for labour depends on the production function which describes the technology currently used by firms.

In a perfectly competitive labour market, wages are determined by marginal product of skilled and unskilled workers. The level of marginal product for each labour type in turn is, in the case of CRS production functions, uniquely determined by the input factor ratio \(\frac{W_s^*}{W_u^*} \). To solve for skilled and unskilled wages for given production function and labour supply, we therefore have to identify the input factor ratio.

Since all adults may not work according to their skill level, i.e., not every skilled one works as skilled worker, the input factor ratio is not necessarily equal to the ratio between skilled and unskilled adults in the population. The reason is that a skilled adult has high knowledge allowing him to apply for jobs requiring either high or low skills. Thus, he will choose the type of work which offers him the higher remuneration. Unlike a skilled adult, an unskilled adult can only apply for jobs which requires less skill.

However, it follows that adults will only work according to their skill level as long as the following wage condition is fulfilled: \(w_s^* \geq w_u^* \). Otherwise, when \(w_u^* > w_s^* \), a skilled adult would have an incentive to apply for an unskilled job. This decision would lead to the readjustment process of the wage condition, i.e., skilled wage would increase and unskilled wage would decrease. At the end, skilled adults will cease to choose to work as unskilled workers when skilled and unskilled wages are equalised.

In the case of \(w_s^* \geq w_u^* \), where adults work according to their skill level\(^9\), wages are formally given by

\[
\begin{align*}
 w_s^* &= b \left[b + \left(\frac{1 - \alpha_t}{\alpha_t} \right) \gamma \right]^{\frac{1-\gamma}{\gamma}} \equiv w_s^*(\alpha_t, b), \\
 w_u^* &= b \left(\frac{\alpha_t}{1 - \alpha_t} \right)^\gamma + 1 \right]^{\frac{1-\gamma}{\gamma}} \equiv w_u^*(\alpha_t, b),
\end{align*}
\]

\(^9\)Formally, according to their skill level means \(W_s^* = L^*_s \) and \(W_u^* = L^*_u \).
which in turn implies

\[\alpha_t \leq \frac{1}{1 + b^{\gamma_t}} \equiv \hat{\alpha}. \] (6)

Variable \(\alpha_t \) denotes the proportion of skilled adults in the adult population and is derived as

\[\alpha_t = \frac{L_t^s}{L_t^s + L_t^u}. \]

Considering this definition of \(\alpha_t \), condition (6) implies that the current proportion of skilled adults must be low enough to end up in the case where all adults work according to their skill level and \(w_t^s \geq w_t^u \).

Note that type-specific wages in period \(t \) can be expressed as functions of \(\alpha_t \) and \(b \) because this formulation of wages will be useful in the later analysis. The wage ratio in this case is computed as

\[\frac{w_t^s}{w_t^u} = b \left(\frac{1 - \alpha_t}{\alpha_t} \right)^{1-\gamma} \]

and depends also on the current skill formation \(\alpha_t \) and technology \(b \).

In the case where a large number of skilled adults in the population exist, i.e., \(\alpha_t > \hat{\alpha} \), \(w_t^u \) would be larger than \(w_t^s \) if all adults work according to their skill level. The readjustment process would take place such that in the end the input factor ratio \(\frac{W_t^s}{W_t^u} \) equals to \(\hat{\alpha} \) and wages are equalised at the level

\[w_t^s = w_t^u = \left[b^{\frac{1}{\gamma}} + 1 \right]^{\frac{1}{\gamma}} \]

for all values of \(\alpha_t \). Note that after the readjustment process the wage ratio in this case is always equal to one.

For a graphical illustration of the wage determination for given skill formations in the economy described by \(\alpha_t \), see figure 1 where wages are displayed as functions \(w^i(\alpha_t, b) \) with \(i = s, u \). Depending on the current proportion of skilled adults, dotted lines in figure 1 display marginal products and solid lines wages. Note that to the left of the threshold \(\hat{\alpha} \), adults work according to their skill level. To the right of \(\hat{\alpha} \) in contrast, the readjustment process takes place which in the end leads to equalised wages.
3 The Dynamics of Human Capital Accumulation

This section derives the human capital accumulation path for the modelled economy. In the scope of this paper, human capital accumulation is described by the level of average human capital in each period. This level is uniquely determined by the proportion of skilled adults, denoted by α_t, assuming that skill levels are constant. Therefore, I will concentrate on the dynamics of α_t in the remaining part of the paper. The first part of this section shows the derivation of the dynamics of α_t while the second part describes the accumulation path.

3.1 Derivation of the Dynamics

Economy’s dynamic evolution is formally given by the dynamic equation for the proportion of skilled adults:

$$\alpha_{t+1} = \alpha_t \lambda_t^{s*} + (1 - \alpha_t) \lambda_t^{u*}. \quad (7)$$

This equation states that the next period’s proportion of skilled adults α_{t+1} is determined by the current optimum education decision of skilled adults λ_t^{s*} and that of unskilled adults λ_t^{u*} weighted by their proportion in the actual adult population.

Optimum education decisions are the result of the following maximisation
problems:
\[
\max_{\lambda_i^t} U_i^t \quad \text{s.t.} \quad w_i^t = c_i^t + \lambda_i^t ne_t
\]
with \(i = s, u\). An adult with skill level \(i\) maximises utility subject to his budget constraint over the fraction of children who shall receive education.

For a moment, we take expected next period’s wages \(w_{t+1}^i\) as given and derive the main determinants of optimal education decisions. These decisions can be derived as
\[
\lambda_t^{i*} = \begin{cases}
0 & \text{if } \frac{1}{1+\beta} [\cdot] < 0, \\
1 & \text{if } \frac{1}{1+\beta} [\cdot] > 1, \\
\frac{1}{1+\beta} \left[\beta \frac{w_i^t}{ne_t} - \frac{w_{t+1}^u}{w_{t+1}^s} \right] & \text{else}.
\end{cases}
\]

That is, adults with skill level \(i\) may not invest in education of any child, may invest in education of all children, or may invest in education of some of their children.

From equation (9), we can infer the dependency of optimal education decisions on fertility rate, current wages, and next period’s wages. Higher fertility rate \(n\) implies that, ceteris paribus and comparing to situations with lower fertility rate, investing in education of the same proportion of children is more costly for the parent, simply due to the larger number of children per parent and hence the larger number of children who shall receive education. Note that the optimal education decision depends positively on parental wage income \(w_i^t\), which in turn implies that skilled parents never invest less in education of their children comparing to unskilled ones since \(w_i^s \geq w_i^u\). Note also that the term \(\frac{w_i^t}{c_i^t}\) in the first summand of the inner solution reflects the inverse relative education cost for parents with skill level \(i\). Furthermore, the term \(\frac{w_{t+1}^u}{w_{t+1}^s}\) reflects the inverse of next period’s wage inequality between skilled and unskilled workers relative to the unskilled wage (relative wage inequality in the following). These findings have two implications. On the one hand, higher relative education cost \(\frac{c_i^t}{w_i^t}\) would lower the chosen proportion of educated children since it is more costly for parents to invest in children’s education. On the other hand, higher relative wage inequality in the next period \(\frac{w_{t+1}^u - w_{t+1}^s}{w_{t+1}^u}\) would affect positively \(\lambda_t^{i*}\) because this means higher incentive to invest in education in order to become skillful in the next period and receive
higher wage. I have now shown that education decisions depend on current and next period’s wages and wage inequality.

So far, we took next period’s wages w_{t+1} as given. We will now take into account that next period’s wages are endogenously determined in the model and will analyse how optimum education decisions change. The only change will be that optimum education decisions cannot be explicitly derived as in the derivation with given next period’s wages presented above.

We know from equations (4) and (5) that wages depend on the skill formation in the respective period. That means, next period’s wages depend on the skill formation α_{t+1}. Since α_{t+1} is determined by equation (7), next period’s wages are influenced by current optimal education decisions λ^*_t. Furthermore, we know that the current proportion of skilled adults α_t determines current wages. Accounting for these facts, optimum education decisions in equation (9) can be rewritten as

$$
\lambda^*_{t}(\alpha_t, \alpha_{t+1}, b) = \begin{cases}
0 & \text{if } \frac{1}{1+\beta} \beta \lambda \leq 0, \\
1 & \text{if } \frac{1}{1+\beta} \beta \lambda > 1, \\
\frac{1}{1+\beta} \beta \left(w(\alpha_t, b) - w(\alpha_{t+1}, b) \right) & \text{else}
\end{cases}
$$

with

$$
\alpha_{t+1} = \alpha_t \lambda^*_{t}(\alpha_t, \alpha_{t+1}, b) + (1 - \alpha_t) \lambda^*_{t}(\alpha_t, \alpha_{t+1}, b).
$$

Thus, taking into account that next period’s wages are determined endogenously, optimum education decisions are no longer explicitly given by equation (9). In fact, they are implicitly defined by equation (10) in conjunction with equation (11) because λ^*_{t} enters implicitly both sides of equation (10). An explicit solution cannot be derived though the model structure is relatively simple. However, optimum education decisions λ^*_{t} and consequently next period’s skill formation α_{t+1} are uniquely determined by the current skill formation α_t for given parameter values.

Proposition 1. For every combination of α_t, b, β, γ, and η, there exist unique solutions for the maximisation problem of skilled and unskilled parents, i.e., for λ^*_{t} and λ^*_{u}. Consequently, the skill formation in the next period α_{t+1} is uniquely determined.

Proof. See appendix A.1.
Given the dynamic equation for α_t and having solved for optimum education decisions, the evolution of economy’s average human capital over time can be described now. Due to the lack of explicit solutions for the optimum education decisions and for the dynamic equation for α_t, the HCAP is derived by employing simulation technique.\(^\text{10}\) Figure 2 presents the simulated result and displays the accumulation path for an example economy. The HCAP is concave which implies low overall investments in children’s education in development stages with currently low average human capital α_t and higher investments in stages with higher average human capital. We can also deduct from the figure that the economy converges in the long-run to a unique steady-state which is given by the intersection of the HCAP with the 45°-line.\(^\text{11}\) Note also that the accumulation path can be divided into three segments which will be described in detail in the following subsection.

Comparing HCAP of economies with different characteristics, figure 3 depicts accumulation paths for economies which differ with respect to their fertility rate. Fertility is higher in the economy described by the lower accumulation path,\(^\text{10}\)To simulate the model, I use the following parameter values: $\beta = 1$, $\gamma = 0.5$, $\eta = 0.22$, $b = 4$ and $n = 1.6$. In the choice of γ, I follow Acemoglu (2002) who proposes a level of $\gamma = 0.5$ which fits empirical data on the elasticity of substitution in the production function (See Acemoglu, 2002, page 20).

\(^\text{11}\)Beside the positive steady-state mentioned here, there exists a second but trivial steady-state at $\alpha_t = 0$ which is not covered in the following analysis.
α_{t+1}

rich

poor

α_{t}

i.e., n_{poor} > n_{rich}. The reason why economies with higher fertility follow a lower HCAP is based on the implication of higher fertility on education decisions. Higher fertility rate induces parents to invest in education of a lower proportion of children. Therefore, given that two countries differ in \(n \) only, higher fertility negatively affects the accumulation path.

Note that in figure 3 the long-run equilibrium is again given by the intersection between the accumulation path and the 45-line for each displayed economy. We can therefore deduct that in the long-run high-fertility economies will converge to a steady-state with lower proportion of skilled adults comparing to low-fertility economies which converge to a steady-state with higher proportion of skilled adults. Considering that lower proportion of skilled adults implies lower average income level, this paper therefore refers to the high-fertility economy as poor country. Since the low-fertility economy consists of relatively many skilled adults in the long-run equilibrium, this economy is labelled as rich country. This negative relationship between fertility and average income level is also empirically observable.¹³

¹²In the simulation of the depicted HCAPs, I choose the following fertility rates: \(n_{poor} = 2.5 \) and \(n_{rich} = 1.6 \).

¹³Birdsall (1988) presents more details on population growth and the negative relationship between income level and fertility rate in recent decades. The negative relationship is explained in the literature by quality-quantity trade-off models which were introduced by Becker (1960) and
3.2 Description of the Dynamics

In this subsection, the HCAP is described in detail. Firstly, I divide the HCAP into segments and secondly, analyse parents’ education decision, which define the HCAP, in every segment separately.

The accumulation path of an economy with certain characteristics can be divided into up to three segments. The segments are shown in figure 2 and are labelled in the following as: (i) left segment for α_t between 0 and $\tilde{\alpha}$; (ii) middle segment for α_t between $\tilde{\alpha}$ and $\hat{\alpha}$; and (iii) right segment for α_t between $\hat{\alpha}$ and 1.\(^{14}\) The presence of these segments depends on parameter values and will be analysed at the end of this subsection.

In what follows, education decision of each parent’s type are analysed for each segment separately. For these analyses, current and next period’s wages are important. To derive later wage ratios, which are main determinants for education decisions, skilled and unskilled wages are displayed for all three segments in figure 4.

![Figure 4: Skilled and unskilled wages in each segment.](image)

We start with the analysis of education decisions in the left segment. With respect to wages in this segment, the proportion of skilled adults is low which Becker and Lewis (1973) as mentioned above. Their results are empirically proven, for instance, by Hanushek (1992).

\(^{14}\)Note that $\hat{\alpha}$ depends on the fertility rate n and is depicted in figure 3 for both the poor and the rich country. Contrary, the value of $\tilde{\alpha}$ does not depend on n and is hence the same for poor and rich countries.
implies high wages for skilled parents and low wages for unskilled ones. Consequently, current and next period’s wage ratios are high for all levels of \(\alpha_t \) and \(\alpha_{t+1} \) within this segment. The high current wage ratio implies high relative education cost for unskilled parents since this cost depend on both current skilled and unskilled wage. The high wage ratio in the next period implies high incentives to invest in education for all parents because the difference between skilled and unskilled wage is large.

This wage formation in the left segment induces the following education decisions. Skilled parents invest in education of all their children. This corner solution in skilled parents’ education decision is the constituting and major property of the left segment. It distinguishes the left segment from the middle segment where skilled parents do not invest in education of all children. Reasons for \(\lambda_t^* = 1 \) are the high incentive to invest in education and low enough relative education cost for skilled parents which are given by \(\eta \). If \(\eta \) is not low enough, skilled parents do not invest in all children’s education and thus, the left segment does not exist. Regarding the education decision of unskilled parents, though they face high relative education cost due to the high current wage ratio, unskilled parents invest in education at least of a small proportion of their children. If unskilled parents do not invest in education of any child, next period’s skill formation equals to the current composition between skilled and unskilled adults because all children of skilled parents receive education. Consequently, high wage inequality arises in the next period which stimulates unskilled parents to invest in education of a small proportion of their children today.

Moreover, we can identify the main determinant of education decisions and the shape of the HCAP in this segment. Although the investment incentive is high for all parents, overall investments are relatively low, as can be deducted from the low levels of \(\alpha_{t+1} \) because the currently large proportion of unskilled parents is restricted by their high relative education cost. The relative education cost of unskilled parents is therefore the most important determinant of the HCAP in this segment. With increasing \(\alpha_t \), wages of both skill groups converge which implies declining relative education cost for unskilled parents. This allows unskilled parents to invest more in education of their children and explains why the slope of the HCAP is larger than one for very small \(\alpha_t \). However, since the speed of wage
convergence decreases with α_t, as can be seen in the wage figure 4, the slope is declining and thus, the accumulation path is concave.

Turning to the middle segment, wages are more equal here than in the left segment. This implies, via smaller current and next period’s wage ratios than in the left segment, lower relative education cost for unskilled parents and lower incentive to invest for all parents. Regarding the education decision of skilled parents, they do not invest in education of all their children anymore though their relative education cost are unchanged. The reason is the lower investment incentive comparing to the situation in the left segment. Investment behaviour of unskilled parents is not changed compared qualitatively; they still invest in education of some of their children. Therefore, the HCAP has a downward kink at $\tilde{\alpha}$ due to less education investments of skilled parents.

In the right segment, income levels and hence relative education cost are equalised for both types of parents. Regarding education decisions, suppose the case of η being low enough, which means that every parent has enough wealth to invest in education of all his children.\footnote{Note that parameter η determines in the right segment relative education cost of all parents.} But this decision cannot be optimal since all adults in the next period would be skilled. Some of them would work as unskilled workers which leads to equalisation between skilled and unskilled wage in the next period, i.e., the readjustment process takes place. Due to equalised wages in the next period after the readjustment process, there is no gain of education investments. Consequently, parents invest in education of a proportion of their children only such that marginal cost equals to marginal gain. Subsequently, wage inequality in the next period is positive which stimulates current education investments. In the right segment, the incentive side is therefore the most important determinant of the HCAP.

Note that the accumulation path is given by a horizontal line in the right segment because education decisions do not change for different levels of the current skill formation. This stems from the fact that the optimal input factor ratio and hence current wages are constant within this segment. Same wage levels for all values of α_t imply, on the one hand, same education cost and, on the other hand, same next period’s wages and hence the same investment incentive. Consequently, education decisions are similar for all current skill formations in the right segment.
All three segments exist when the following parameter restrictions are fulfilled. The left segment, for instance, disappears if relative education cost for skilled parents is too high, i.e., if \(\eta > \eta = \frac{\beta}{1 + \beta n} \). The middle segment would disappear if and only if relative education cost parameter \(\eta \) is less or equal to zero, which is ruled out by assumption, i.e., \(\eta \in [0, 1] \). Therefore, the middle segment is always present. The right segment is present if the value of \(\hat{\alpha} \), derived as \(\frac{b^{\frac{1}{1-\gamma}}}{1 + b^{\frac{1}{1-\gamma}}} \), is smaller than one. It is smaller than one when \(b > 0 \) which is fulfilled by assumption. Hence, the right segment is also always present.

4 The Effects of Skill-Biased Technological Change on Human Capital Accumulation Path

So far, we described the human capital accumulation over time for an economy with constant technology. This section analyses firstly the effects of an unexpected skill-biased technological change on the human capital accumulation path and compares secondly these effects between two economies which are different in their fertility rate.

Regarding SBTC effects on HCAP, I start with analysing the effects of SBTC on wages and wage ratios, followed by the analysis of how changes in wages affect education decisions, and finally, derive the net effect of wage changes on the HCAP.

SBTC is simulated by a raise in parameter \(b \) which weights skilled and unskilled labour input in the production process. Due to this change in technology, marginal products and consequently wages are affected. As shown formally in equations (12) to (14), marginal product and wage for each skill level in period \(t \) rise after SBTC for given skill formation \(\alpha_t \), where \(t \in [k, \infty] \) and \(k \) denotes the
period of SBTC occurrence.

\[
\frac{\partial w_s}{\partial b} = \left[b + \left(\frac{1 - \alpha_t}{\alpha_t} \right)^\gamma \right]^{\frac{1-\gamma}{\gamma}} + b \frac{1 - \gamma}{\gamma} \left[b + \left(\frac{1 - \alpha_t}{\alpha_t} \right)^\gamma \right]^{\frac{1-2\gamma}{\gamma}} > 0 \quad (12)
\]

\[
\frac{\partial w_u}{\partial b} = \frac{1 - \gamma}{\gamma} \left[b \left(\frac{\alpha_t}{1 - \alpha_t} \right)^\gamma + 1 \right]^{\frac{1-2\gamma}{\gamma}} \left(\frac{\alpha_t}{1 - \alpha_t} \right)^\gamma > 0 \quad (13)
\]

\[
\frac{\partial w_s}{\partial b} = \left(\frac{1 - \alpha_t}{\alpha_t} \right)^{1-\gamma} > 0 \quad (14)
\]

Note that the skilled wage rises faster than the unskilled wage, shown by equation (14), due to the skill-biased character of the technology change. This in turn implies an increase in the ratio between skilled and unskilled wage in current and subsequent periods after SBTC occurrence.

These increased wage ratios cause two effects on current and future education decisions. It is helpful for identifying these effects to rearrange the optimal education decision equation for each parental skill level. Concentrating on inner solutions, skilled and unskilled parents’ education decision are derived as

\[
\lambda_u^s = \frac{1}{1 + \beta} \left[\frac{\beta}{n \eta} \frac{w_u}{w_s} - \frac{1}{\frac{w_u}{w_s} + 1} \right] \quad \text{and} \quad (15)
\]

\[
\lambda_s^s = \frac{1}{1 + \beta} \left[\frac{\beta}{n \eta} - \frac{1}{\frac{w_u}{w_s} + 1} \right] \quad (16)
\]

respectively where \(t \in [k, \infty] \).

We are now able to see how education decisions are affected by changes in current and next period’s wage ratio. Note from equation (15) that unskilled parents’ education decision in period \(t \) is influenced by the current wage ratio \(\frac{w_u}{w_s} \) because the education decision depends on the current relative education cost. This relative education cost rises when the current wage ratio increases.\(^{16}\) Consequently,
unskilled parents face a negative effect on their education decision after SBTC occurrence, which is referred to as cost effect in the following. Furthermore, note from equations (15) and (16) that next periods wage ratio $\frac{w_{st}^t}{w_{ut}^t}$ affects the investment incentive of all parents in period t. Here, an increase in the wage ratio raises the investment incentive and therefore affects positively education decisions of skilled and unskilled parents. This effect is referred to as incentive effect. Formally, the cost and incentive effect can be shown in the following derivatives holding α_t and α_{t+1} constant:

$$\frac{\partial \lambda_{u*}^t}{\partial b} = \frac{1}{1 + \beta} \left[\beta - 1 \frac{\partial w_{st}^t}{\partial b} - 1 \frac{\partial w_{st+1}^t}{\partial b} \right] \forall t \quad \text{and} \quad (17)$$

$$\frac{\partial \lambda_{s*}^t}{\partial b} = \frac{1}{1 + \beta} \left[\frac{-1}{\alpha_t} \frac{\partial w_{st+1}^t}{\partial b} \right] > 0 \quad (18)$$

where $t \in [k, \infty]$.

Both cost and incentive effect work in different directions, so that the net effect of SBTC on education decisions and hence HCAP is ambiguous. To identify the net effect on HCAP, we have to verify what determines the net effect though we do not have an explicit equation to solve for α_{t+1}.

Proposition 2. The net effect of SBTC on HCAP is uniquely determined by the sign of $\alpha_t \frac{\partial \lambda_{u*}^t}{\partial b} + (1 - \alpha_t) \frac{\partial \lambda_{s*}^t}{\partial b}$ where current and expected subsequent skill formation, i.e., α_t and α_{t+1}, are hold constant.

Proof. See appendix A.2.

That means we can simply derive the net effect by concentrating on SBTC effects on wage ratios and consequently on education decisions without taking into account that the resulting changes in education decisions affect future skill compositions which in turn via expected skill formations affect again education decisions.
Regarding the sign of $\alpha_t \frac{\partial \lambda^*_t}{\partial b} + (1 - \alpha_t) \frac{\partial \lambda^*_{u,t}}{\partial b}$ and hence the net effect of SBTC on HCAP, I find the following.

Proposition 3. The value of $\alpha_t \frac{\partial \lambda^*_t}{\partial b} + (1 - \alpha_t) \frac{\partial \lambda^*_{u,t}}{\partial b}$ is negative for values of α_t close to zero and is positive for $\alpha_t \to 1$.

Proof. See appendix A.3.

In cases with currently few skilled adults, i.e., for low levels of α_t, the net effect is negative because the negative cost effect outweighs the positive incentive effect. In these cases, the cost effect is the main determinant of overall investment in education. Furthermore, many parents are unskilled and are concerned by the negative cost effect. Contrariwise, in cases with currently many skilled adults, i.e., for high levels of α_t, the net effect is positive since the incentive effect outweighs the cost effect. In these cases, skilled and unskilled wage are more equal or even equalised for values of α_t between $\hat{\alpha}$ and 1. Therefore, the cost effect, which depends on the wage gap between current skilled and unskilled wage, is weak or even invalid. Additionally, the incentive side is the main determinant of parents’ education decision. Since the incentive side is positively affected after occurrence of SBTC and the cost effect is weak or invalid, the net effect on HCAP is positive.

The results of the analysis regarding short- and long-run effects of SBTC on HCAP are illustrated in the following figure. Figure 5 displays two HCAPs in the case of the above introduced rich country with different technology level. The solid (resp. dashed) HCAP in this figure depicts the accumulation path for a low
(resp. high) level of the technology parameter b. The economy follows the solid HCAP before and switches to the dashed HCAP after the occurrence of SBTC.\footnote{SBTC is simulated by a rise in b from 4 to 6.5.}

In the case of the rich country, SBTC has the following effects in short- and long-run. Since the economy converges to a higher steady-state value of average human capital after SBTC, the analysed economy faces a positive effect in the long-run. The short-run effect is ambiguous and depends on the current development stage at time k where SBTC occurs. If average human capital α_k is lower than α^{crit}, which denotes the intersection of the accumulation paths before and after SBTC occurrence, human capital growth will drop and consequently, the economy faces a slow-down in human capital growth in the short-run. In the case of $\alpha_k > \alpha^{\text{crit}}$ in contrast, the economy is positively affected and human capital growth accelerates in the short-run.

Regarding the comparison of SBTC effects on HCAP between two countries with different characteristics, the same technology change is now analysed in the case of the poor country in figure 6 and will be compared to the case of SBTC effects in the rich country analysed above. Contrary to the case of the rich country, the steady-state is negatively affected because the poor economy converges to a lower level of human capital in the long-run after SBTC. The reason is that the steady-state of poor countries comprises low average human capital or in other words low proportion of skilled adults. As discussed above, the HCAP is negatively affected in development stages with low average human capital. Poor countries therefore face a negative effect on their long-run equilibrium. Regarding the

![Figure 6: Impact of SBTC on HCAP in the poor country, $b = 4$ and $b' = 6.5$.](image)
short-run effect, human capital accumulation is clearly negatively affected assuming that α_k is smaller than the steady-state level. Poor countries may even face a decline in average human capital in the medium-run when α_k is located between the steady-state level before and after SBTC occurrence.

As a result, rich countries rather benefit in the long-run from SBTC and must not fear the negative cost effect though the growth of average human capital may slow down in the short-run. Contrary, poor countries are rather harmed in their human capital accumulation in both short- and long-run.

5 Summary

This paper analyses the effect of skill-biased technological change (SBTC) on the human capital accumulation path (HCAP). In the scope of this paper, the human capital accumulation over time is described by the level of average human capital. This level is uniquely determined by the proportion of skilled adults, denoted by α_t, assuming that skill levels are constant.

Simulation methods are used to identify accumulation process over time because an explicit analytical solution is not achievable. The simulation shows that the accumulation path and the long-run equilibrium (steady-state) for average human capital are uniquely defined for given parameters. Consequently, countries with different characteristics expressed by different parameter values, say differences in fertility rates, follow different HCAPs and converge to different steady-states. Consistent with empirical findings, the model predicts that countries with higher fertility rates converge to steady-states with lower proportion of skilled adults and hence with less average human capital and income levels.

The analysis of SBTC effects on HCAP is conducted in two steps. Firstly, the analysis focuses on SBTC effects on HCAP in general and secondly, a comparative analysis is made between rich (low-fertility) and poor (high-fertility) countries.

Regarding the first analysis, SBTC causes two effects: a negative effect relative to education investment cost and a positive effect relative to incentive to invest in education. Due to its skill-biased character, SBTC raises the wage ratio in current and subsequent periods. These increased wage ratios imply on the one hand,
for current and future periods, increasing relative education cost for unskilled parents, in other words a negative effect on unskilled parents’ education decisions. On the other hand, larger wage gaps increase, for current and future periods, incentive to invest in education. These incentive effects have a positive impact on all parents’ education decisions. Though two forces in different directions are caused by SBTC, the net effect can be identified. The net effect on HCAP is negative in situations where only few adults are skilled, i.e., for low values of α_t, because many parents are unskilled and face the negative cost effect and the cost effect is the stronger and determining factor for the education decision of unskilled parents. In contrary, HCAP is positively affected in situations with many skilled adults, i.e., for high values of α_t, since relative education cost for all parents is equalised and is unaffected by SBTC. The only active force in this case is then the positive incentive effect.

Regarding the comparison between poor and rich countries, the paper shows that rich countries are rather positively affected in the long-run by SBTC comparing to poor countries. Rich countries’ steady-state comprises high proportion of skilled adults and consequently, the positive incentive effect dominates. As for poor countries, their steady-state comprises lower proportion of skilled adults and hence, stronger negative cost effect which dominates the positive incentive effect. In the short-run, rich countries may face temporarily a slow down in human capital accumulation depending on the current skill formation. Poor countries are always negatively affected in the short-run.

This paper analyses the effect of skill-biased technology change on the human capital accumulation process. The effect stems from the impact of SBTC on current and future wages and consequently individuals’ education decision. However, there are other factors that can affect wages and HCAP in the same way as SBTC can. Globalisation, for instance, is one of the most obvious factors. Its main implications are (i) indirect effects via international competition in goods market which influence domestic wages and (ii) direct effects via competition in international labour markets. Therefore, it is also important to take into account assumptions on open economy as an extension of the current model which is only a closed economy framework.
A Appendices

A.1 Proof of proposition 1

Proposition 1. For every combination of α_t, b, β, γ, and η, there exist unique solutions for the maximisation problem of skilled and unskilled parents, i.e., for λ^{s*}_t and λ^{u*}_t. Consequently, the skill formation in the next period α_{t+1} is uniquely determined.

Proof. Optimum education decisions depend on current and future wages as shown in equation (9). Considering that wages depend on the skill formation in the respective period, it follows that optimum education decisions depend on α_t and α_{t+1}. Furthermore, since wages depend on the technology level, education decisions depend also on parameter b. Accounting for these dependencies, the dynamic equation of α_t can be rewritten as

$$\alpha_{t+1} = \alpha_t \lambda^{s*}_t(\alpha_t, \alpha_{t+1}, b) + (1 - \alpha_t) \lambda^{u*}_t(\alpha_t, \alpha_{t+1}, b).$$

(19)

Variable α_{t+1} on the right-hand side of equation (19) determines next period’s wages and is expected by parents at time t. Variable α_{t+1} on the left-hand side instead is the actual outcome of current education decisions. Due to rational expectation and certainty in the model, i.e., perfect foresight, the expected value must be equal to the actual value. Therefore, next period’s skill formation α_{t+1} is only implicitly defined by equation (19).

For the following proof, both sides of equation (19) are considered as separate functions which depend on α_{t+1}. We are interested in situations where both functions are equalised. With regard to the right-hand side, the reaction of optimal education decisions to a change in the expected future skill formation derives as

$$\frac{\partial \lambda^{s*}_t}{\partial \alpha_{t+1}} = \begin{cases}
\frac{-1}{1 + \beta} \frac{\partial w^{u*}_t}{\partial \alpha_{t+1}} \frac{\partial \alpha_{t+1}}{\partial \alpha_{t+1}} \frac{\partial w^{u*}_t}{\partial \alpha_{t+1}} w^{u*}_{t+1} < 0 & \text{for } \alpha_{t+1} < \overset{\wedge}{\alpha} \text{ and } 0 < \lambda^{s*}_t < 1, \\
0 & \text{else}
\end{cases}$$

(20)

where $\frac{\partial w^{u*}_t}{\partial \alpha_{t+1}} > 0$ and $\frac{\partial w^{s*}_t}{\partial \alpha_{t+1}} < 0$ for $\alpha_{t+1} < \overset{\wedge}{\alpha}$ and $\frac{\partial w^{u*}_t}{\partial \alpha_{t+1}} = \frac{\partial w^{u*}_t}{\partial \alpha_{t+1}} = 0$ else. Since
the derivative in equation (20) is non-positive, the right-hand side is therefore monotonic decreasing in α_{t+1}. Intuitively, a higher proportion of skilled adults decreases the wage inequality and hence lowers the investment incentive. Parents therefore invest less in education of their children, and consequently, the right-hand side is negatively affected by a rise in α_{t+1}. Contrary, the left-hand side depends positively on and is strictly monotonic increasing in α_{t+1}.

Since the right-hand side is strictly monotonic increasing and the left-hand side is monotonic decreasing in α_{t+1}, there exist only one unique solution for α_{t+1} fulfilling equation (19). Figure 7 represents graphically the qualitative properties of both functions and depicts both right-hand side (denoted by *RHS*) and left-hand side (denoted by *LHS*) of equation (19) for a given value of α_t, i.e., for given current wages, and given parameter values.

![Figure 7: Unique graphical solution for α_{t+1}.](image)

A.2 Proof of proposition 2

Proposition 2. The net effect of SBTC on HCAP is uniquely determined by the sign of $\alpha_t \frac{\partial \lambda^*_s}{\partial b} + (1 - \alpha_t) \frac{\partial \lambda^*_u}{\partial b}$ where current and expected subsequent skill formation, i.e., α_t and α_{t+1}, are hold constant.

Proof. The implicit dynamic equation for α_t can be derived as

$$\alpha_{t+1} = \alpha_t \lambda^*_t(\alpha_t, \alpha_{t+1}, b) + (1 - \alpha_t) \lambda^*_u(\alpha_t, \alpha_{t+1}, b).$$

(21)
Employing the implicit function theorem, we can identify what drives the effect of technology change on α_{t+1}. The implicit derivative is derived as

$$\frac{d\alpha_{t+1}}{db} = -\frac{\alpha_t \frac{\partial \lambda_s^*}{\partial b} + (1 - \alpha_t) \frac{\partial \lambda_u^*}{\partial b}}{\alpha_t \frac{\partial \lambda_s^*}{\partial \alpha_{t+1}} + (1 - \alpha_t) \frac{\partial \lambda_u^*}{\partial \alpha_{t+1}} - 1}.$$ \hspace{1cm} (22)

Since a higher proportion of skilled adults in the next period implies a decreasing wage ratio, i.e., lower wage inequality, the investment incentive is lower. Parents thus choose to invest in education of a smaller number of children. Consequently, the denominator in derivative (22) is strictly negative. The overall sign of the derivative is then uniquely determined by the numerator and the changes in optimum education decisions holding α_{t+1} constant.

A.3 Proof of proposition 3

Proposition 3. The value of $\alpha_t \frac{\partial \lambda_s^*}{\partial b} + (1 - \alpha_t) \frac{\partial \lambda_u^*}{\partial b}$ is negative for values of α_t close to zero and is positive for $\alpha_t \rightarrow 1$.

Proof. Current and next period’s wage ratio influence current education decisions. Their reaction to the technology change can be derived as

$$\frac{\partial \frac{w_s^t}{w_u^t}}{\partial b} = \begin{cases} \left(\frac{1-\alpha_t}{\alpha_t}\right)^{1-\gamma} & \text{for } \alpha_t < \hat{\alpha}, \\ 0 & \text{else}; \end{cases}$$

$$\frac{\partial \frac{w_s^{t+1}}{w_u^{t+1}}}{\partial b} = \left(\frac{1 - \alpha_{t+1}}{\alpha_{t+1}}\right)^{1-\gamma},$$

respectively.

The following findings can be inferred from these derivatives. For the case of $\alpha_t \rightarrow 1$, on the one hand, the current wage ratio does not change because wages are equalised for values of α_t between $\hat{\alpha}$ and 1 and is always equal to one. Consequently, the negative cost effect is invalid. On the other hand, since α_{t+1} is strictly smaller than one for $\alpha_t \in [\hat{\alpha}, 1]$ and is hold constant in this analysis, next period’s wage ratio always rises. That means that the positive incentive effect is
active. As a result, SBTC affects via wages the education decisions and the HCAP positively.

Regarding the case of α_t being close to zero, note that $\alpha_{t+1} \to 0$ when $\alpha_t \to 0$ as shown graphically in figure 3. Therefore, the change in current and next period’s wage ratios are going to infinity for $\alpha_t \to 0$. concentrating on small values of α_t close to zero, we find that the change in current wage ratio is larger than that in next period’s wage ratio, i.e., $\frac{\partial w_t^s/w_t^u}{\partial b} > \frac{\partial w_{t+1}^s/w_{t+1}^u}{\partial b}$. The reason is that α_{t+1} is always larger than α_t for small positive values of α_t. Note also that a small value of α_t implies high weight on the education decision of unskilled parents and only low weight on that one of skilled parents. As a result, the negative cost effect dominates the positive incentive effect in this case, and human capital accumulation is overall negatively affected. □
References

