

illi & F. Mealli - Estimating direct and ind

Causal effects with an intermediate variable

Under truncation by death the direct effect of Z on Y is defined *only* for a subset of individuals, e.g. having <u>S=1</u> irrespective of the value of <u>Z</u>

Such subset of individuals is not observable

how can a DAG represent truncation by death?

S. Lauritzen suggests to use mapping variables

L. Grilli & F. Mealli - Estimating direct and indirect effects

Causal inference with principal strata

Principal causal effect of Z on Y:

p(Y(1)) vs. p(Y(0)) for the individuals of a given principal strata

or, in terms of the graph,

 $p(Y | Z=1,\sigma)$ vs. $p(Y | Z=0,\sigma)$ for a given σ

Note the use of $p(Y | Z, \sigma)$ instead of p(Y | Z, S, U)

Average causal effects across principal strata are nonsense

Under truncation by death the causal effect is defined only for some principal strata (e.g. the stratum with S(0)=S(1)=1)

Grilli & F. Mealli - Estimating direct and indirect effects

Surrogates and direct effects

S. Lauritzen uses mapping variables to represent in a DAG the concepts of direct principal effect and principal surrogate Since σ is a partition of U it follows that (provided Z is binary)

Strong surrogate	Y⊥Z S, U
Principal surrogate	$Y \perp Z \mid S, \sigma$
Direct principal effect	YZZ S, σ
Direct effect	Y⊉Z∣S, U
L. Grilli & F. Mealli - Estim	nating direct and indirect effects

An application: effectiveness of degree programmes effectiveness of degree programmes with respect to annotation of the university of Florence 1992's cohort of freshmen of the University of Florence employment • two distinct degree programmes, Economics and Political Science employment permanent and political science • Employment: binary indicator for having a permanent job about two years after degree permanent

Grilli & F. Mealli - Estimating direct and in

An application: effectiveness of degree programmes Why is it not fair to compare employment for the graduated students only? • Because it is possible that the two degree programmes "select" the individuals in a different way (e.g. one d.p. is more easy in general or for students with certain features) If the graduates of the two d.p. differ for some unobserved features which are related with the occupational chances then a comparison based only on gradutated students yields biased results

Grilli & F. Mealli - Estimating direct and indir

e	ffective	An ap ness o	pplica f degre	ation: ee pro	grammes
In our	case both	Z and S a	are dicho	tomous –	→ 4 possible strata
Z	σ=GG	σ=GN	$\sigma = NG$	σ=NN	G-Graduated
1	G	G	N	N	
0	G	Ν	G	Ν	IN=INOL dragnated
Principal intermedia Graduate i Principal st The memb unobserve	strata are de te variable S f enrolled in I trata are not i ership indicat d) covariate (efined by th (counterfac Economics a influenced I for of the pi need for /a	ie values of tual): e.g. and Not gra by Z (nor S rincipal sta atent class	the two p GN are the aduate if er 5) ta is a cate models)	otential versions of the e students who become nrolled in Political Sc. gorical latent (i.e.
	L. Gr	illi & F. Mealli - I	Estimating direc	t and indirect ef	fects 20

Relationship b	etwe	en ob	served and	latent group
Observed group $O(Z, S^{obs})$	Zi	S _i ^{obs}	Yiobs	Latent group L (principal stratur
0(1,1)	$\overline{\mathcal{T}}$	$\overline{1}$	in {0,1}	GG or GN
Q(1,0)	1	0	not defined	NG or NN
O(0,1)	0	1	$in \{0,1\}$	GG or NG
O(0,0)	0	0	not defined	GN or NN

li & F. Mealli - Estimating direct and in

	S	tanda	rd cas	e	
Valuos of	V(0) V(1) for	latent classes	dofined by r	nodel errors	$(\chi^{(Y)} > \beta^{(Y)} > 0)$
Values of	(0,0)				
(2) - (2)	(0,0)	(0,1)	(0.1)	(0,1)	(1,1)
$-(\alpha^{(\alpha)}+\beta^{(\alpha)})$	(0,0)	(0,0)	(0,0)	(0,1)	(1,1)
$\mathcal{E}_{i}^{(S)}$	$-(\alpha^{(r)}+\gamma^{(r)})$	$+\beta^{(r)}) -(\alpha^{(r)})$	$+\chi^{(\mathbf{r})}) -(\alpha^{(\mathbf{r})})$	$+\beta^{(l)})$ -c	X(R)
Each row i	is a principal	stratum			
Each cell i	s a further pa Il the causal	artitioning suc effect of Z on	h that also Y Y is constant	is determinis	itic, so
With γ^{cr}	$\beta^{(Y)} \ge \beta^{(Y)}$ no	cell can have	a negative e	ffect	
	L. Grilli 8	F. Mealli - Estimat	ing direct and indir	ect effects	33

Values of	Y(0),Y(1) for	r latent classes	s defined by r	model errors	$\beta^{(Y)} \ge 0 \ge \gamma^{(Y)}$ $\beta^{(Y)} + \gamma^{(Y)} \le$
	(0,0)	(0,0)	(0,1)	(0,1)	(1,1)
$-\alpha^{(n)}$	(0,0)	(0,0)	<mark>(1,0)</mark>	(1,1)	(1,1)
$-(\alpha^{(3)}+\beta^{(3)})$	(0,0)	(0,1)	(1.1)	(1,1)	(1,1)
$\mathcal{E}_{l}^{(S)}$ $\mathcal{E}_{l}^{(V)}$	-(a ⁽ⁱⁱ⁾ +	$\beta^{(l)}) = \alpha^{(l)}$	$\dot{y} = (\dot{\alpha}^{(1)} + \dot{y})$	$(\alpha^{(r)} + \beta^{(r)}) - (\alpha$	(0)+X(0)

	Trunca	tion by	death	
Values of Y(C),Y(1) for latent	t classes defined	by model error	5
	(0,0)	(0,1)	(1,1)	
-α(3)	(*,0)	(*,1)	(*,1)	
$-(\alpha^{(3)}+\beta^{(3)})$	(*,*)	(*,*)	(*,*)	
$\mathcal{E}_i^{(S)}$ $\mathcal{E}_i^{(P)}$	-(α ^(r)	$+\beta^{(Y)})$ -a	(19)	
Here the cau individuals h	isal effect is def aving S=1 irres	ined only in the pective of <i>Z</i> . The	principal stratur prefore ACE is	n of the
P	$(-(\alpha^{(Y)}+\beta^{(Y)}))$	$<\varepsilon_i^{(Y)} \le -(\alpha^{(Y)})$	$ \varepsilon_i^{(S)} > -\alpha^{(S)}$	(i)
	L. Grilli & F. Meall	i - Estimating direct and	d indirect effects	3

Grilli & Mealli (2005)

Data

A. Administrative database of the 1992's cohort of freshmen enrolled in the degree programmes in Economics (Economia e Commercio) and Political Science (Scienze Politiche) of the University of Florence

B1-B3. Three *census surveys* on the occupational status of the graduates of the University of Florence of years 1998, 1999 and 2000, respectively

Datasets A and B1-B3 are merged

Data

1941 freshmen belong to the examined 1992's cohort: 1068 in *Economics* and 873 in *Political Sciences*. By the end of the year 2000 the status of the students is the following:

Degree Programme	Dropped	Graduated	Still enrolled	Total
Economics	545	270	253	1068
	51.03%	25.28%	23.69%	
Political Sciences	532	176	165	873
	60.94%	20.16%	18 90%	

Degree Programme	Graduated	Interviewed	Permanent job
Economics	270	186 68.89% *	96 51.61%**
Political Sciences	176	99 56.25%*	36 36.36% **

Data					
Covariate		Economics (n=1068)	Political Science (n=873)		
Fen	nale	0.41	0.54		
Res	idence in Florence	0.23	0.31		
Gyr	nnasium	0.34	0.45		
Late	e enrollment	0.06	0.22		
Hig	h grade	0.37	0.25		
	Covariates are important	since the treatmen	i		

- Model has 18+9=27 parameters
- The treatment and the 5 covariates lead to 128 theoretical sample proportions
- The available sample proportions are 99
 - Maximization algorithm: quasi-Newton with a BFGS update of the Cholesky factor of the approximate Hessian.
 - Software: SAS proc NLMIXED

Principal strata submodel results

- The estimated *proportion of students belonging to the GG group* varies a lot with the covariates, from a minumum of 1.1% (*students with weak background*) to a maximum of 62.2%
- the *proportions of students belonging to the GN and NG groups* (i.e. the students able to graduate in only one degree programme) are very small (but for some covariate patterns the GN and NG groups are larger then the GG group)

Principal strata submodel results

• the two degree programmes have a *differential causal effect on the probability of graduation only for students having a weak background.* Orientation policies should then be designed especially for this kind of students.

Outcome submodel results

- the causal effect in the GG group (on the logit scale) is estimated as 0.666 (s.e. 0.301, significant at 5%) corresponding to a difference of about 15% in the probabilities of employment
- the reliability and also the substantive importance of the causal effect depends on the *size of the GG stratum*: for example, the causal effect in the *GG* group for *students having a weak background* has little relevance

Outcome submodel results

- The level of the probability of being employed varies a lot with the covariates:
 47.1% to 77.9% for Economics
 - ✓ 31.4% to 64.5% for Political Science

\sum		Initial model	Final model	\mathbb{N}
	Number of parameters	25	21	
	Deviance (-2logL)	2231.8	2231.8	
~	Principal strata submodel (π 's)			\sim
	α_{GG}^s	-4.403 (0.449	-4.402 (0.448)	
्र	α_{GV}^*	-2.644 (0.749	-2.647 (0.752)	
e l	$\alpha_{\rm NG}^{\rm f}$	-3.206 (0.836	-3.207 (0.835)	\sim
D	$\beta_{GG,ginnexian}^{x}$	1.275 (0.157	1.275 (0.157)	
v d	Par, grossminn	-5.757 (n.a.) (l	
<u> </u>	$\beta_{NG,gynescrites}^{\pi}$	-15.041 (n.a.	2 - 20	
	Radhigh_mad	1.204 (0.146	1.205 (0.146)	
2	$\beta^{\pi}_{GN,high_giade}$	1.113 (0.653	1.113 (0.652)	\sim
	$eta^{*}_{NG,high_grade}$	-8.092 (114.022) - a	
ti i i i i i i i i i i i i i i i i i i	PGG.regular_impoliant	2.024 (0.425	2.023 (0.425)	\sim
	$\beta_{GN,regular_environment}^{\pi}$	-0.012 (0.788	-0.009 (0.792)	
S	B ^{III} NG, regular_envolument	-8.140 (64.473		
D	B [#] GG, finale	0.117 (0.137	0.117 (0.137)	
	B [#] _{GW, Jernals}	-0.617 (0.753	-0.622 (0.755)	
Ĕ	B ^{ar} NG, femile	0.988 (1.112	0.991 (1.11)	
	$\beta_{GG, Flavence}^{\pi}$	0.280 (0.144	0.280 (0.144)	
	P.G.N.F.Lorence	-13.499 (559.599		\sim
	$\beta_{NG,Florence}^{\pi}$	-10.353 (533.855	ar l	\sim

	Initial	model	Final r	nodel
Number of parameters		27		21
Deviance (-2logL)		2231.8		2231.8
Outcome submodel (γ 's)				
a'r	1.257	(1.240)	1.262	(1.241)
a a co	-1.357	(1.561)	-1.365	(1.568)
$\alpha'_{1,GW}$	0.593	(1.185)	0.596	(1.185)
$\alpha_{0,NG}^{\gamma}$	0.498	(1.057)	0.484	(1.058)
$\beta_{grinnasium}^{y}$	-0.405	(0.374)	-0.410	(0.374)
$\beta_{high_grade}^{y}$	-0.035	(0.262)	-0.036	(0.263)
Bregular_enrolmènt	-0.933	(0.979)	-0.932	(0.979)
β_{female}^{r}	0.072	(0.272)	0.070	(0.272)
$\beta_{\rm Florence}^{\prime}$	0.106	(0.333)	0.104	(0.333)

Probability	00000	00100	00110	00101	01100	10100	11100	111
π_{agi}	1.1	8.0	9.1	10.9	20.3	24.9	52.5	62.3
π_{cNF}	6.3	6.0	3.3	0.0	14.0	0.0	0.0	0.
π_{NGi}	3.6	0.0	0.0	0.0	0.0	0.0	0.0	0.
π _{AW2}	89.0	86.0	87.6	89.1	65.7	75.1	47.5	37.
X1.664	77.9	58.2	59.9	60.7	57.3	48.0	47.1	51.
Yacas	64.5	41.7	43.4	44.2	40.8	32.2	31.4	35.
KLaivi	61.9	39.0	40.7	41.5	38.1	29.8	29.0	32.
Yo,NGi	20.3	9.1	9.7	10.0	8.9	6.3	6.1	7.
Causal effect $\gamma_{1,001} - \gamma_{0,000}$	135	16.5	165	164	165	15.8	157	16