On the relationship between identif causality and instrumental varia

Perugia - Convegno Causalità 29-30 aprile 2005

Outline

- Nonparametric identification of causal effects
- Parametric notion of identification
- Identification within the Potential Outcome context
- Instrumental variables

Identification and Causality

Nonparametric identification of causal ϵ

- Spirtes, Glymour and Scheines (1993), Pearl (1995, 20
- Joint distribution of r.v. $\left(Y_{1}, \ldots, Y_{k}\right)$ factorizing accorc with $V=(1, \ldots, k)$ the set of nodes:

$$
P_{1, \ldots, k}\left(Y_{1} \ldots Y_{k}\right)=P_{k}\left(Y_{k}\right) \prod_{i=1}^{k-1} P_{i}\left(Y_{i} \mid Y_{\operatorname{par}}\right.
$$

- Nonparametric as the functional form of each factor is
- Causal graph
- Enhance the graph with a causal interpretation:
(a) all relevant variables are in the graph (causally suff)
(b) represents the system under intervention and conditions (stability).

Identification and Causality

- What is a causal effect?
- Causal effect: $P\left(Y_{1}, \ldots, Y_{k} \mid\right.$ do $\left.\left(Y_{j}\right)\right)$ (post-intervention
- If the graph is causal it can be derived from the pi distribution:
- $P\left(Y_{1}, \ldots, Y_{k} \mid \operatorname{do}\left(Y_{j}\right)=v\right)=\left.\Pi_{i \neq j} P\left(Y_{i} \mid Y_{\operatorname{par}(i)}\right)\right|_{Y_{j}=v}$
- Truncated factorization (Pearl, 2000, 2003)

When all variables are observed and the graph is caus effects are identifiable.

Identification and Causality

- Unobserved variables

- Partition $V=\{O, L\}$ with O observed and L latent (i.e over).
- Let the effect of Y_{j} on Y_{k} be of interest:

$$
P\left(Y_{k} \mid \operatorname{do}\left(Y_{j}\right)=v\right)=\sum_{\operatorname{par}(j)} P\left(Y_{k} \mid v, \operatorname{par}(j)\right) P(\operatorname{par}(j)
$$

- The effect of Y_{j} on Y_{k} is identifiable if $P\left(Y_{k} \mid \mathrm{do}\left(Y_{j}\right)\right.$ computed uniquely from the observed variables.
- Simple criterion: it is identifiable whenever nodes j correspond to variables that are observed.

Identification and Causality

Graphical criteria

The simple criterion can be sharpened:

- back-door criterion
- front-door criterion
- Galles and Pearl (1995) criterion
- Tian and Pearl (2002)...

These are all sufficient criteria.

Identification and Causality

Parametric identification

- Rothenberg (1971) Bowden (1973)
- A statistical model $P\left(Y_{1}, \ldots, Y_{k} ; \theta\right)$ is assumed
- θ_{0} and θ_{1} are observationally equivalent if $P\left(y_{1}\right.$, $P\left(y_{1}, \ldots, y_{k} ; \theta_{1}\right)$ for all $y_{i} \in \mathcal{R}^{k}$.
- Identification at θ_{0}
- Global Identification: a parameter point θ_{0} is identifiable no other $\theta \in \Omega$ such that θ and θ_{0} are observationally e
- Local Identification: a parameter point θ_{0} is locally iden exists an open neighborhood of θ_{0} containing no othel and θ_{0} are observationally equivalent;
- Model identification
- A model il globally identifiable if every parameter pc globally identified
- A model is locally identified if every parameter point θ identified
- Another look at the definition

Let $m_{1}(\theta), \ldots, m_{r}(\theta)$ be the moment characterizing P sume they exist). Then global identification of a mode $m_{1}(\theta), \ldots, m_{r}(\theta)$ should be invertible w.r. to θ.

Sometimes θ is partitioned $\theta=\left\{\theta_{a}, \theta_{b}\right\}$ with θ_{a} of Identification is then assessed only for a θ_{a}

Identification and Causality

- When a parametric model is assumed the graphical o sharpened

For the Gaussian model (Structural Equation Approach):

- Instrumental Variable;
- Series of papers by Brito and Pearl (2004a,2004b,...);
- Grzebyk et al. (2004), Kuroki and Mayakawa (2004), St Wermuth (2005);
- Gaussian case: Instrumental variable $O=\{1,2,3\} L=\{$

- $\beta_{k j}$ is the partial regression coefficient of j on k give
- $\alpha_{j k}$ is the simple regression coefficient;
- We want to estimate β_{12};
$-Y_{3} \perp Y_{4}$ and $Y_{3} \perp Y_{1} \mid Y_{2} Y_{4} ;$
Y_{3} is an instrument for β_{12} as

$$
\beta_{12}=\alpha_{13} / \alpha_{23}
$$

Identification and Causality

- Another example: $O=\{1,2,3,5\} L=\{4\}$

- Under the Gaussian assumption: β_{12} can still be identified of elements of the observed covariance matrix.

Identification and Causality

But are these results really results on cat

- Strongly relying on the assumption of causal sufficienc
- Strongly relying on the group-level representation (E Ch. 8).

Identification and Causality

One step behind

- The definition of causal effect is at the individual level, comparison between $P\left(Y_{k} \mid\right.$ do $\left.\left(Y_{j}\right)=v\right)$ and $P\left(Y_{k} \mid d\right.$ each individual in the population;
- The way we are doing this comparison is between grout defined according to the variables Y.

Now, if (a) the individuals are random variables and (b) th of causal sufficiency holds, then the two things are the sa 2000, Pearl, 2003).

Potential Outcome Framework

Y outcome, D cause a binary variable (usually called trea

- Causal Effect: comparison between $P(Y \mid \operatorname{do}(D)=$ $\mathrm{do}(D)=0$) at the individual level.
- New notation for the individual level i : comparison betv

$$
Y_{i}\left(D_{i}=1\right) \text { and } Y_{i}\left(D_{i}=0\right)
$$

such as average treatment effect $E\left[Y_{i}\left(D_{i}=1\right)\right]-E\left[Y_{i}\right.$

- Missing variable problems: we observe $\left(Y_{i}, D_{i}\right)$.

Assignment mechanism

- If the assignment mechanism of D is random the a effect is identified as:

$$
E\left(Y_{i} \mid D_{i}=1\right)-E\left(Y_{i} \mid D_{i}=0\right)
$$

- If strongly ignorable given covariates then average trea identified (Rubin and Rosenbaum papers);
- If it cannot be ignored (as in studies with partial co search for an instrumental variable (Angrist, Imber papers).
- Angrist, Imbens and Rubin papers

There is an instrument Z (usually called intention to treat) D such that:

- $D_{i}=D_{i}(w)$ is either 0 or 1 , an indicator of whether i $Z_{i}=w$;
- Potential outcomes: $Y_{i}\left(D_{i}, Z_{i}\right)$;
- Missing variable problem: we observe (Y_{i}, D_{i}, Z_{i})

Identification and Causality

$$
E\left[Y_{i}\left(D_{i}=1\right)-Y_{i}\left(D_{i}=0\right) \mid D_{i}(w)-D_{i}(v)=1\right]=
$$

It is the average difference of the potential outcomes in pec have taken the treatment of $Z_{i}=w$ and not taken if $Z_{i}=$ people).

We can identify the effects of Z (intention-to-treat effects)

- $E\left[Y_{i} \mid Z_{i}=w\right]-E\left[Y_{i} \mid Z_{i}=v\right]$
- $P\left(D_{i}=1 \mid Z_{i}=w\right)-P\left(D_{i}=1 \mid Z_{i}=z\right)$.

Without further assumptions the causal effect cannot be

Identification and Causality

- Further assumptions
- The usual assumption of Rubin causal models holds
- $Y_{i}\left(D_{i}=d, z\right)=Y_{i}\left(D_{i}=d, w\right)$ (exclusion restriction)
- For each $w>v, D_{i}(w) \geq D_{i}(z)$ for all i (monotonicity).
$\mu_{1}-\mu_{0}=\frac{E\left[Y_{i} \mid Z_{i}=w\right]-E\left[Y_{i} \mid Z_{i}=v\right]}{P\left(D_{i}=1 \mid Z_{i}=w\right)-P\left(D_{i}=1 \mid Z_{i}=v\right)}$
Instrumental variable formula.

Identification and Causality

For this example

- The Potential Outcome assumptions (Rubin Cau Monotonicity) lead to the same estimator than the Gaussian (Pearl's Structural Equation Models);
- D should be binary in Potential Outcome Context an (Durbin 1954);
- Again, reliance on different but strong assumptions.

Nevertheless the two approaches are different:

- the definition of causal effect is different: $P(Y$ $E\left[Y_{i}\left(D_{i}=1\right)-Y_{i}\left(D_{i}=1\right)\right] ;$
- Pearl's causal models can be generalised to any s Rubin's single cause and single effect (?);
- However, Rubin's does not assume a DAG as depende
- Overall, the use of instrumental variables within Outcome Framework seems a more convincing approa

Conclusions

- Within the Structural Equation Approach there are se ization of IV;
- They must have a counter part within the Poter Approach (Principal Strata?);
- They must also have a role in constructing Boundin Causal Effects (Pearl, 2003)
- Testing of Causal Hypothesis? (Robins, Spirtes, 2003).

Identification and Causality

