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Outline

• Nonparametric identification of causal effects

• Parametric notion of identification

• Identification within the Potential Outcome context

• Instrumental variables
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Nonparametric identification of causal effects

• Spirtes, Glymour and Scheines (1993), Pearl (1995, 2000)

• Joint distribution of r.v. (Y1, . . . , Yk) factorizing according to a DAG
with V = (1, . . . , k) the set of nodes:

P1,...,k(Y1 . . . Yk) = Pk(Yk) Πk−1
i=1 Pi(Yi | Ypar(i))

• Nonparametric as the functional form of each factor is not specified.
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I Causal graph

• Enhance the graph with a causal interpretation :

(a) all relevant variables are in the graph (causally sufficiency);

(b) represents the system under intervention and changing of
conditions (stability).

Identification and Causality 4



I What is a causal effect?

• Causal effect: P (Y1, . . . , Yk | do(Yj)) (post-intervention distribution)

• If the graph is causal it can be derived from the pre-intervention
distribution:

• P (Y1, . . . , Yk | do(Yj) = v) = Πi 6=jP (Yi | Ypar(i)) |Yj=v

• Truncated factorization (Pearl, 2000, 2003)

When all variables are observed and the graph is causal, all causal
effects are identifiable.
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I Unobserved variables

• Partition V = {O, L} with O observed and L latent (i.e. marginalised
over).

• Let the effect of Yj on Yk be of interest:

P (Yk | do(Yj) = v) =
∑

par(j) P (Yk | v, par(j))P (par(j))

• The effect of Yj on Yk is identifiable if P (Yk | do(Yj) = v) can be
computed uniquely from the observed variables.

• Simple criterion: it is identifiable whenever nodes j, k and par(j)
correspond to variables that are observed.
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I Graphical criteria

The simple criterion can be sharpened:

• back-door criterion

• front-door criterion

• Galles and Pearl (1995) criterion

• Tian and Pearl (2002)...

These are all sufficient criteria.
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Parametric identification

• Rothenberg (1971) Bowden (1973)

• A statistical model P (Y1, . . . , Yk; θ) is assumed

• θ0 and θ1 are observationally equivalent if P (y1, . . . , yk; θ0) =
P (y1, . . . , yk; θ1) for all yi ∈ Rk.
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I Identification at θ0

• Global Identification: a parameter point θ0 is identifiable if there exists
no other θ ∈ Ω such that θ and θ0 are observationally equivalent;

• Local Identification: a parameter point θ0 is locally identifiable if there
exists an open neighborhood of θ0 containing no other θ such that θ

and θ0 are observationally equivalent;
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I Model identification

• A model il globally identifiable if every parameter point θ ∈ Ω is
globally identified

• A model is locally identified if every parameter point θ ∈ Ω is locally
identified
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I Another look at the definition

Let m1(θ), . . . , mr(θ) be the moment characterizing P (·, θ) (we as-
sume they exist). Then global identification of a model implies that
m1(θ), . . . , mr(θ) should be invertible w.r. to θ.

Sometimes θ is partitioned θ = {θa, θb} with θa of interest only.
Identification is then assessed only for a θa
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I When a parametric model is assumed the graphical criteria can be
sharpened

For the Gaussian model (Structural Equation Approach):

• Instrumental Variable;

• Series of papers by Brito and Pearl (2004a,2004b,...);

• Grzebyk et al. (2004), Kuroki and Mayakawa (2004), Stanghellini and
Wermuth (2005);
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I Gaussian case: Instrumental variable O = {1, 2, 3} L = {4}

3 12

4

– βkj is the partial regression coefficient of j on k given the par(k);

– αjk is the simple regression coefficient;

– We want to estimate β12;

– Y3⊥⊥Y4 and Y3⊥⊥Y1 | Y2 Y4;

Y3 is an instrument for β12 as

β12 = α13/α23
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I Another example: O = {1, 2, 3, 5} L = {4}
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I Under the Gaussian assumption: β12 can still be identified, as a function
of elements of the observed covariance matrix.
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But are these results really results on causality?

• Strongly relying on the assumption of causal sufficiency;

• Strongly relying on the group-level representation (Edwards, 2000,
Ch. 8).
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One step behind

• The definition of causal effect is at the individual level, i.e. involves a
comparison between P (Yk | do(Yj) = v) and P (Yk | do(Yj) = v′) for
each individual in the population;

• The way we are doing this comparison is between group of individuals
defined according to the variables Y .

Now, if (a) the individuals are random variables and (b) the assumption
of causal sufficiency holds, then the two things are the same (Edwards,
2000, Pearl, 2003).
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Potential Outcome Framework

Y outcome, D cause a binary variable (usually called treatment).

• Causal Effect: comparison between P (Y | do(D) = 1) and P (Y |
do(D) = 0) at the individual level.

• New notation for the individual level i: comparison between

Yi(Di = 1) and Yi(Di = 0)

such as average treatment effect E[Yi(Di = 1)]− E[Yi(Di = 0)].

• Missing variable problems: we observe (Yi, Di).
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I Assignment mechanism

• If the assignment mechanism of D is random the average causal
effect is identified as:

E(Yi | Di = 1)− E(Yi | Di = 0)

• If strongly ignorable given covariates then average treatment effect is
identified (Rubin and Rosenbaum papers);

• If it cannot be ignored (as in studies with partial compliance) we
search for an instrumental variable (Angrist, Imbens and Rubin
papers).
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I Angrist, Imbens and Rubin papers

There is an instrument Z (usually called intention to treat) that influences
D such that:

• Di = Di(w) is either 0 or 1, an indicator of whether i takes D when
Zi = w;

• Potential outcomes: Yi(Di, Zi);

• Missing variable problem: we observe (Yi, Di, Zi)
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I The causal effect:

E[Yi(Di = 1)− Yi(Di = 0) | Di(w)−Di(v) = 1] = µ1 − µ0

It is the average difference of the potential outcomes in people that would
have taken the treatment of Zi = w and not taken if Zi = v (cooperative
people).

We can identify the effects of Z (intention-to-treat effects):

• E[Yi | Zi = w]− E[Yi | Zi = v]

• P (Di = 1 | Zi = w)− P (Di = 1 | Zi = z).

Without further assumptions the causal effect cannot be identified.
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I Further assumptions

• The usual assumption of Rubin causal models holds (SUTVA)

• Yi(Di = d, z) = Yi(Di = d,w) (exclusion restriction)

• For each w > v, Di(w) ≥ Di(z) for all i (monotonicity).

µ1 − µ0 = E[Yi|Zi=w]−E[Yi|Zi=v]
P (Di=1|Zi=w)−P (Di=1|Zi=v)

Instrumental variable formula.

Identification and Causality 21



For this example

• The Potential Outcome assumptions (Rubin Causal Model +
Monotonicity) lead to the same estimator than the causal DAG +
Gaussian (Pearl’s Structural Equation Models);

• D should be binary in Potential Outcome Context and not for SEM
(Durbin 1954);

• Again, reliance on different but strong assumptions.
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Nevertheless the two approaches are different:

• the definition of causal effect is different: P (Y | do(D)) versus
E[Yi(Di = 1)− Yi(Di = 1)];

• Pearl’s causal models can be generalised to any structure while
Rubin’s single cause and single effect (?);

• However, Rubin’s does not assume a DAG as dependent structure;

• Overall, the use of instrumental variables within the Potential
Outcome Framework seems a more convincing approach.
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Conclusions

• Within the Structural Equation Approach there are several general-
ization of IV;

• They must have a counter part within the Potential Outcome
Approach (Principal Strata?);

• They must also have a role in constructing Bounding Intervals for
Causal Effects (Pearl, 2003)

• Testing of Causal Hypothesis? (Robins, Spirtes, Wassermann,
2003).
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