On the relationship between identif causality and instrumental varia

Perugia - Convegno Causalità

29-30 aprile 2005

Outline

- Nonparametric identification of causal effects
- Parametric notion of identification
- Identification within the Potential Outcome context
- Instrumental variables

Nonparametric identification of causal e

- Spirtes, Glymour and Scheines (1993), Pearl (1995, 20
- Joint distribution of r.v. (Y_1, \ldots, Y_k) factorizing accord with $V = (1, \ldots, k)$ the set of nodes:

$$P_{1,...,k}(Y_1...Y_k) = P_k(Y_k) \ \Pi_{i=1}^{k-1} P_i(Y_i \mid Y_{par(k)})$$

Nonparametric as the functional form of each factor is it

► Causal graph

• Enhance the graph with a **causal interpretation**:

(a) all relevant variables are in the graph (causally suff

(b) represents the system under intervention and conditions (*stability*).

► What is a causal effect?

- Causal effect: $P(Y_1, \ldots, Y_k \mid do(Y_j))$ (post-intervention
- If the graph is *causal* it can be derived from the predistribution:
- $P(Y_1, ..., Y_k \mid \mathsf{do}(Y_j) = v) = \prod_{i \neq j} P(Y_i \mid Y_{par(i)}) \mid_{Y_j = v}$
- Truncated factorization (Pearl, 2000, 2003)

When all variables are observed and the graph is cause effects are identifiable.

Unobserved variables

- Partition $V = \{O, L\}$ with O observed and L latent (i.e over).
- Let the effect of Y_j on Y_k be of interest: $P(Y_k \mid \mathsf{do}(Y_j) = v) = \sum_{par(j)} P(Y_k \mid v, par(j)) P(par(j))$
- The effect of Y_j on Y_k is identifiable if $P(Y_k \mid do(Y_j)$ computed uniquely from the observed variables.
- Simple criterion: it is identifiable whenever nodes *j* correspond to variables that are observed.

► Graphical criteria

The simple criterion can be sharpened:

- back-door criterion
- front-door criterion
- Galles and Pearl (1995) criterion
- Tian and Pearl (2002)...

These are all sufficient criteria.

Parametric identification

- Rothenberg (1971) Bowden (1973)
- A statistical model $P(Y_1, \ldots, Y_k; \theta)$ is assumed
- θ_0 and θ_1 are observationally equivalent if $P(y_1, P(y_1, \dots, y_k; \theta_1))$ for all $y_i \in \mathbb{R}^k$.

▶ Identification at θ_0

- Global Identification: a parameter point θ_0 is identifiable no other $\theta \in \Omega$ such that θ and θ_0 are observationally e
- Local Identification: a parameter point θ₀ is *locally* iden exists an open neighborhood of θ₀ containing no other and θ₀ are observationally equivalent;

Model identification

- A model il globally identifiable if every parameter po globally identified
- A model is locally identified if every parameter point θ identified

Another look at the definition

Let $m_1(\theta), \ldots, m_r(\theta)$ be the moment characterizing *P* sume they exist). Then global identification of a mode $m_1(\theta), \ldots, m_r(\theta)$ should be invertible w.r. to θ .

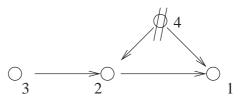
Sometimes θ is partitioned $\theta = \{\theta_a, \theta_b\}$ with θ_a of Identification is then assessed only for a θ_a

When a parametric model is assumed the graphical c sharpened

For the Gaussian model (Structural Equation Approach):

- Instrumental Variable;
- Series of papers by Brito and Pearl (2004a,2004b,...);
- Grzebyk et al. (2004), Kuroki and Mayakawa (2004), St Wermuth (2005);

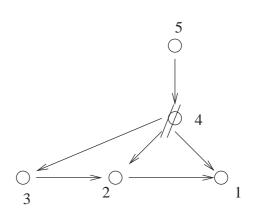
► Gaussian case: Instrumental variable $O = \{1, 2, 3\}$ $L = \{4, 2, 3\}$



- β_{kj} is the partial regression coefficient of j on k give
- α_{jk} is the simple regression coefficient;
- We want to estimate β_{12} ;
- $Y_3 \perp \downarrow Y_4$ and $Y_3 \perp \downarrow Y_1 \mid Y_2 Y_4$;
- Y_3 is an instrument for β_{12} as

$$\beta_{12} = \alpha_{13}/\alpha_{23}$$

• Another example: $O = \{1, 2, 3, 5\} L = \{4\}$



► Under the Gaussian assumption: β_{12} can still be identified of elements of the observed covariance matrix.

But are these results really results on cau

- Strongly relying on the assumption of causal sufficiency
- Strongly relying on the group-level representation (Ed Ch. 8).

One step behind

- The definition of causal effect is at the individual level, comparison between P(Y_k | do(Y_j) = v) and P(Y_k | do each individual in the population;
- The way we are doing this comparison is between *group* defined according to the variables *Y*.

Now, if (a) the individuals are random variables and (b) the of *causal sufficiency* holds, then the two things are the sa 2000, Pearl, 2003).

Potential Outcome Framework

- Y outcome, D cause a binary variable (usually called treat
- Causal Effect: comparison between $P(Y \mid do(D) = do(D) = 0)$ at the individual level.
- New notation for the individual level i: comparison betw

$$Y_i(D_i = 1)$$
 and $Y_i(D_i = 0)$

such as average treatment effect $E[Y_i(D_i = 1)] - E[Y_i(D_i = 1)]$

• Missing variable problems: we observe (Y_i, D_i) .

► Assignment mechanism

• If the assignment mechanism of *D* is random the average effect is identified as:

$$E(Y_i \mid D_i = 1) - E(Y_i \mid D_i = 0)$$

- If strongly ignorable given covariates then average trea identified (Rubin and Rosenbaum papers);
- If it cannot be ignored (as in studies with partial consearch for an instrumental variable (Angrist, Imber papers).

► Angrist, Imbens and Rubin papers

There is an instrument Z (usually called *intention to treat*) t D such that:

- $D_i = D_i(w)$ is either 0 or 1, an indicator of whether *i* $Z_i = w$;
- Potential outcomes: $Y_i(D_i, Z_i)$;
- Missing variable problem: we observe (Y_i, D_i, Z_i)

► The causal effect:

$$E[Y_i(D_i = 1) - Y_i(D_i = 0) \mid D_i(w) - D_i(v) = 1] =$$

It is the average difference of the potential outcomes in peohave taken the treatment of $Z_i = w$ and not taken if $Z_i =$ people).

We can identify the effects of Z (intention-to-treat effects)

•
$$E[Y_i \mid Z_i = w] - E[Y_i \mid Z_i = v]$$

•
$$P(D_i = 1 \mid Z_i = w) - P(D_i = 1 \mid Z_i = z).$$

Without further assumptions the causal effect cannot be id

Further assumptions

- The usual assumption of Rubin causal models holds (S
- $Y_i(D_i = d, z) = Y_i(D_i = d, w)$ (exclusion restriction)
- For each w > v, $D_i(w) \ge D_i(z)$ for all i (monotonicity).

$$\mu_1 - \mu_0 = \frac{E[Y_i | Z_i = w] - E[Y_i | Z_i = v]}{P(D_i = 1 | Z_i = w) - P(D_i = 1 | Z_i = v)}$$

Instrumental variable formula.

For this example

- The Potential Outcome assumptions (Rubin Cau Monotonicity) lead to the same estimator than the o Gaussian (Pearl's Structural Equation Models);
- D should be binary in Potential Outcome Context and (Durbin 1954);
- Again, reliance on *different* but strong assumptions.

Nevertheless the two approaches are different:

- the definition of causal effect is different: $P(Y \mid C E[Y_i(D_i = 1) Y_i(D_i = 1)];$
- Pearl's causal models can be generalised to any s Rubin's single cause and single effect (?);
- However, Rubin's does not assume a DAG as depende
- Overall, the use of instrumental variables within Outcome Framework seems a more convincing approa

Conclusions

- Within the Structural Equation Approach there are se ization of IV;
- They must have a counter part within the Poter Approach (Principal Strata?);
- They must also have a role in constructing Bounding Causal Effects (Pearl, 2003)
- Testing of Causal Hypothesis? (Robins, Spirtes, 2003).