CORSO DI LAUREA SIGI

Statistica II

ESERCITAZIONE 4 (Correzione 27 Aprile 2007)

COGNOME	NOME

- A. Si consideri una popolazione normale con media 100 e varianza 49.
 - 1. Si determini la probabilità che per un campione di n = 50 unità la media campionaria sia compresa tra 100 e 102. Si discuta la validità di tale risultato se si rimuove l'ipotesi di normalità.
 - 2. Si stimi la probabilità precedente tramite una simulazione in Excel (sugg.: si estragga un numero sufficientemente grande di campioni dalla popolazione data, si calcolino le corrispondenti medie campionarie, ...).
 - 3. Si determini la probabilità che la varianza campionaria (corretta) sia compresa nell'intervallo (40; 60).
- **B.** Si voglia stimare la media μ di una popolazione di cui non si conosce il modello distributivo con un campione di ampiezza n=5. Si considerino i seguenti stimatori:

$$T_1 = \overline{X}$$
 $T_2 = 0.25X_1 + 0.20X_2 + 0.05X_3 + 0.40X_4 + aX_5$ $T_3 = X_1$ $T_4 = 10$

- 1. Si indichi quali stimatori sono non distorti per μ .
- 2. Si determini il valore a in modo che lo stimatore T_2 sia non distorto per μ .
- 3. Si stabilisca quale stimatore ha varianza minima.
- 4. Si indichi quale stimatore tra T_1 , T_2 e T_3 è il più efficiente.
- 5. Si stabilisca se esiste uno stimatore più efficiente tra $T_1 = \overline{X}$ e $T_4 = 10$.
- **C.** Si estraggano 1000 campioni di dimensione n = 5 da una distribuzione normale come media 50 e varianza 148 e per ogni campione si calcolino gli stimatori T_1 e T_2 di cui sopra.
 - 1. Sulla base delle distribuzioni empiriche così ottenute si verifichi se i due stimatori sono o meno distorti e quale dei due è più efficiente.
 - 2. Si consideri lo stimatore $T = \frac{T_1 + T_2}{2}$; si determini se è non distorto e si verifichi tale risultato utilizzande le distribuzioni empiriche di cui al punto precedente.