Department of Economics

Statistical Methods for Finance

Send results via e-mail to francesco.bartolucci@unipg.it by October 18

Exercise 1 - Compute the first, the second and the third quartile of a random variable $X \sim N(5,2)$

- Compute the first, the second and the third quartile of a random variable $X \sim \chi^{2}(d f=3)$
- Compute the first, the second and the third quartile of a random variable $X \sim \operatorname{Binom}(30,0.4)$

Exercise $2-$ For a random variable $X \sim N(0,1)$, compute $\operatorname{Pr}(2.2<X<3.2)$

- For a random variable $X \sim t(d f=6)$, compute $\operatorname{Pr}(X>4)$
- For a random variable $X \sim \operatorname{Binom}(10,0.6)$, compute $\operatorname{Pr}(X \leq 3)$

Exercise 3 - Generate 1000 random numbers from a $N(5,2.5)$, from a $\chi^{2}(d f=$ $3)$ and from a $\operatorname{Binom}(30,0.4)$ and compute, for each distribution, the mean and the variance. Also, check that these values are similar to the theoretical ones

Exercise 4 - Provide a graphical representation of the density and of the cumulative distribution function of the following random variables: $X_{1} \sim N(0,1), X_{2} \sim N(3,1), X_{3} \sim(0,5)$

- Provide a graphical representation of the density and of the cumulative distribution function of the following random variables: $X_{1} \sim t(d f=7), X_{2} \sim t(d f=5), X_{3} \sim t(d f=2)$
- Provide a graphical representation of the density and of the cumulative distribution function of the following random variables: $X_{1} \sim \operatorname{Binom}(30,0.4), X_{2} \sim \operatorname{Binom}(20,0.3), X_{3} \sim \operatorname{Binom}(10,0.2)$

Exercise 5 - Generate 1000 random numbers from two normal distributions with different parameters and compute mean and variance of a linear combination of the two, checking that the empirical values are coherent with the theoretical ones

Exercise 6 - Generate 1000 random numbers from two normal distributions with mean equal 0 and variance equal to 1 . By means of an appropriate transformation, use them to generate a chi-square distribution. Check, using the histogram and the plot of the chisquare density function (with the appropriate number of degrees of freedom), that the empirical distribution is similar to the theoretical one

Exercise 7 - During the last Stats exam, the following marks have been assigned:
$21,24,30,18,25,27,21,20,18,30,27,21,23,23,30,21,18,25,30,28$
Also, the gender of each student is

$$
M, F, F, F, M, F, M, F, M, M, F, M, F, M, M, M, F, F, M, M
$$

- Create two variables (Mark and Gender) assuming the values reported above
- Show the table of absolute, relative and percentage frequencies for both variables
- Show the contingency table with absolute, relative and percentage frequencies
- Compute row and column marginal distributions
- Compute the conditional distribution of the Mark variable across the categories of the Gender variable

